

 Assembler

For the Sinclair QL Computer

Computer One

COMPUTER ONE ASSEMBLER

for the Sinclair QL Computer

A USER GUIDE

© Copyright Computer One Limited 1985

No part of this manual may be adapted or reproduced in any
form without the prior written approval of Computer One
Limited.

All information is given in good faith. Computer One can
accept no responsibility for any loss or damage arising from
the information contained in this manual or from use of the
product.

Computer One reserves the right to alter the specification of
the product without warning.

Computer One welcomes ideas and comments. These and any bug
reports or further enquiries should be sent on the report
form at the back of this manual to:

Technical Enquiries, Computer One Limited, Science Park,
Milton Road, Cambridge CB4 4BH.

Sinclair and QL are registered trademarks of Sinclair
Research Ltd.

TABLE OF CONTENTS

INTRODUCTION..1

Chapter 1. USING THE ASSEMBLER....................................4

1.1 BACKING UP
1.2 OPERATION AND MULTITASKING
1.3 COMPLETION
1.4 USING THE CODE PRODUCED FROM THE ASSEMBLER

Chapter 2. SOURCE CODE REQUIREMENTS...............................8

2.1 SOURCE LINE FORMAT
2.2 CONSTANTS
2.3 EXPRESSIONS
2.4 CURRENT PROGRAM POSITION
2.5 EXPRESSION OPERANDS
2.6 OPCODES
2.7 INSTRUCTION ARGUMENTS
2.8 SYMBOLS
2.9 LABELS
2.10 COMMENTS

Chapter 3. ASSEMBLER DIRECTIVES..................................13

3.1 DC — DEFINE CONSTANT
3.2 DS — DEFINE STORAGE
3.3 DCB — DEFINE CONSTANT BLOCK
3.4 EQU — EQUATE
3.5 ALIGN
3.6 XREF — EXTERNAL REFERENCE
3.7 XDEF — EXTERNAL DEFINITION
3.8 CONDITIONAL ASSEMBLY

Chapter 4. ERROR MESSAGES..17

Chapter 5. USING MACHINE CODE ROUTINES...........................21

5.1 INTRODUCTION
5.2 BASIC ENHANCEMENT
5.3 THE INITIALISATION SECTION
5.4 THE DEFINITION TABLE
5.5 THE EXAMPLE SOURCE
5.6 USING MACHINE CODE ROUTINES IN PASCAL
5.7 PASCAL SOURCE TEMPLATE

Chapter 6. INSTRUCTION SET SUMMARY...............................28

6.1 OPCODE EXTENSIONS
6.2 INSTRUCTIONS
6.3 INSTRUCTION ARGUMENTS
6.4 ADDRESSING MODES
6.5 GENERICS

Chapter 7. USING THE EDITOR......................................36

7.1 EDIT FILE FORMAT
7.2 EDITING WHILE RUNNING THE ASSEMBLER
7.3 EDITING A FILE

7.3.1 Moving the Cursor
7.3.1.1 Paging
7.3.2 Inserting Text
7.3.3 Deleting Text
7.3.4 Splitting and Concatenating Lines
7.3.5 Finishing the Edit Session

7.4 THE EDITOR FILE MENU
7.4.1 Load File
7.4.2 Create New File
7.4.3 Read File
7.4.4 Save a Copy
7.4.5 Save and Continue
7.4.6 Save Listing
7.4.7 Remove Error Text
7.4.8 Save and Kill
7.4.9 Kill

7.5 EDIT MENU
7.5.1 Inserting a Marker
7.5.2 Cut
7.5.3 Copy
7.5.4 Paste
7.5.5 Show Buffer

7.6 STRING SEARCH
7.7 EDITOR LIFT

7.8 EDIT LISTING FACILITY

INDEX..46

INTRODUCTION

The Computer One assembler is an integrated system designed for the
development of assembly language programs on the Sinclair QL,
comprising a full 68008 assembler and program editor. The assembler
accepts standard Motorola 68000 mnemonics, and may be used to
assemble from either memory or microdrive or disk files. The
supplied editor allows you to build and update your assembler
source files, and examine the error messages produced by the
assembler.

Both the assembler and the editor are run as QDOS jobs, and thus
may be operated concurrently under the QL QDOS operating system.
This is known as multitasking, and allows the user to have more
than one program operating in the computer at once.

ABOUT THIS GUIDE

This user guide provides the information required to edit and
assemble programs using the Computer One assembler on the Sinclair
QL microcomputer. This guide is not intended to teach you 68000
assembler programming, or to serve as a reference guide to the QDOS
operating system.

For further information on these, the reader is referred to the
various texts recommended at the end of this section.

The early chapters of the guide describe the use of the assembler,
its required input syntax, and its output.

The assembler may also be used to write machine code extensions to
SUPERBASIC and Computer One Pascal. This is briefly described in
Chapter 5 and example routines are provided.

1

The 68000 instruction set is described in Chapter 6.

Finally, Chapter 7 explains the operation of the supplied
multitasking program editor.

USING THE ASSEMBLER WITH QDOS MULTITASKING

Before explaining the operation of the assembler and editor in
detail, it will be useful to have some understanding of how the
QDOS multitasking operates, and why it is used.

Multitasking with the assembler and the editor allows both programs
to be run concurrently, thus allowing you to switch quickly between
the editor and the assembler, and to edit a file while another file
is being assembled. By keeping both programs in memory, you can
quickly switch between the functions without having to load them
each time you need them. Later chapters describe how the editor and
assembler are loaded as jobs.

With the editor and the assembler running concurrently, you can
switch the input or control of the jobs from the keyboard simply by
pressing CTRL-C (the CTRL and C keys pressed together). The
position of the flashing cursor on the screen will indicate which
job is currently receiving input. Pressing CTRL-C repeatedly thus
allows you to switch between SUPERBASIC, the assembler and the
editor in sequence (and any other jobs that may be also running).

When editing or assembling very large files, you may also choose to
load fewer jobs into memory, giving you more space to edit or
assemble the program.

BIBLIOGRAPHY

Three books you may find useful are:

68000 Assembly Language Programming — Kane, Hawkins and Leventhal
publishers: Osborne/McGraw-Hill, ISBN 0—0931988—62—4

A substantial work on the 68000 and assembly language
generally, rather American and very heavy going at times,
but an excellent introduction.

2

MC68000 16-Bit Microprocessor User's Manual — Motorola
publishers: Prentice-Hall

The reference work on the processor, with an excellent page
by page itemisation of the instructions. Partly hardware
oriented, but still the best software reference manual by
far.

QL Advanced User Guide — Adrian Dickens
publishers: Adder Publishing, Cambridge (available from Computer
One).

This book describes QDOS, the 68008 processor and
interfacing to BASIC. We have found this book a great help
in the writing of our software. We highly recommended it
should you wish to use the QL to its full potential.

3

Chapter 1. USING THE ASSEMBLER

1.1 BACKING UP

The supplied microdrive cartridge should be backed up immediately on
receipt. This cartridge should be treated as a Master copy. It is
recommended that you make two backup copies using the Master
cartridge only as an emergency backup and not to run the software.
Backing up may be done by running the supplied 'CLONE' program as
follows:

1. Place the Master copy in microdrive 2 (the right hand side drive).

2. Place a blank cartridge in microdrive 1.

3. Enter the following command:

LRUN mdv2_clone <ENTER>

4. The QL will respond with various instructions to name the new
cartridge and initiate the copying. MAKE SURE THE MASTER IS IN DRIVE
2.

5. The 'cloned' system may be used as soon as the microdrives have
stopped running.

Repeat the procedure with another cartridge, and store the master and
one of the copies in a safe place. Use the remaining copy as your
working master — only use the others in emergency. Please note that
you may only copy the software for your own use.

4

1.2 OPERATION AND MULTITASKING

The assembler is run as a QDOS job by using the EXEC command. Type

EXEC <device>_c1ass (for example EXEC mdv1_c1ass)

When the assembler has been loaded a new window will appear in the
middle of the screen and you will be prompted for a filename. Since
the assembler is multitasking (with SuperBASIC and possibly the
editor running concurrently) you will have to switch the keyboard
input into the assembler job at this stage. CNTL-C is used to switch
the input between jobs. Note that if you use the EXEC_W command to
load the assembler all other jobs are suspended until it has finished
and you will not need to press CNTL-C.

When you are entering a filename the default drive is mdv2_ and need
not be specified. The default file extension for source files is
'_asm', for code files is *_cde', for EXECable files is '_exe' and
for linker format files is '_Ink' and these need not be specified.
These extensions will automatically be appended to the file name
entered if not already present.

Examples:

source — the assembler will attempt to assemble
the file mdv2_source_asm.

mdv1_src_abc — the assembler will attempt to assemble
the file mdvl_src_abc_asm

You will next be prompted for the assembler options. The options
available are:

F — If this option is selected the assembler will assemble the file
as it is read from microdrive, or any other device which you may be
assembling from. Otherwise the whole file is loaded and assembled
from memory. Assembling from memory is of course considerably faster.
The default option is to-assemble from memory.

J — If this option is selected, the output file will be made an
EXECable QDOS job. The default extension for this file is '_exe' and
if there are no errors in the assembly of the the source file you
will be prompted for the amount of data space required by the job. If
you just press ENTER, the default size is 256 bytes.

L — If this option is selected the assembler will output the code in
linker format (Sinclair Relocatable Object File Format~ SROFF). Note
SROFF files are not executable but must be submitted to a linker.

5

The default options are selected by just pressing ENTER when
prompted. To change an option from the default just type the letter
representing the option and press ENTER.

Example: Assembler options: fj (ENTER)
Assemble from file and produce a QDOS job.

If the default option of assembling from memory is chosen and there
is insufficient room, the system will issue a warning and will
automatically assemble from the file. If the error 'out of memory'
occurs while the file is being assembled try reassembling it using
the 'f option.

If you get an 'out of memory' error while assembling, it means that
the assembler is unable to get free memory to expand the symbol
table. This is likely to happen if there are other jobs in memory
with large space requirements. For example if you are multi-tasking
with the editor and have allowed a large workspace for the editor
there may not be sufficient for the assembler. If this happens then
try to run the assembler with less space-demanding jobs or on its
own.

When the options have been chosen, you will be prompted for a code
file name. If you just press ENTER the name will default to the
source file name but with

the extension '_cde', '_exe', or '_Ink' depending on the options
selected. When you have entered a valid code file name the assembler
will attempt to delete the old code file. if it exists. Note the code
file may be on a different device.

You will then be prompted for a listing file name. If you press ENTER
no listing file will be produced, otherwise a listing will be output
to the specified file. This file may be specified either as a
standard file (e.g. mdv1_fred_list) or could be another QDOS device
(e.g. ser1) such as a printer.

The source file is then assembled, with any error lines being
displayed, along with the error numbers. (Pressing CNTRL and F5 will
stop/restart the display). Use the editor to display the source file
with the embedded error messages (see section 7.8).

6

1.3 COMPLETION

When the assembly is complete you will be prompted tor the job data
size if the 'j' option has been selected (see section 1.2). A
message is then displayed which gives you the option of killing the
assembler job (press 'k'), of pressing CNTL-C to switch to another
job (this only applies if you did not use the EXEC_W command }, or
of pressing any other key to assemble another file. If you have
pressed CNTL-C, then you will still have to press another key, except
'k', to assemble another file when you have come back to the
assembler (by pressing CNTL-C from another job).

1.4 USING THE CODE PRODUCED FROM THE ASSEMBLER

A code file produced from the assembler may be loaded into memory to
be executed from BASIC or Pascal (or indeed any other application).
This is described in chapter 5. If, however, you have used the 'j'
option (see section 1.2), the EXEC command can be used from
SUPERBASIC to start the job running.

Note that a delete job trap is required in your code to terminate the
job correctly.ERROR MESSAGES

7

Chapter 2. SOURCE CODE REQUIREMENTS

The assembler accepts source code close to Motorola assembly language
format; the actual requirements are detailed below. It does not
include macros.

A line of assembler source code may be blank, a comment, or a line
containing labels and/or opcodes or directives.

2.1 SOURCE LINE FORMAT

A line takes the syntactic form:

[label] [opcode [argument[,argument]]] [comment]

or

[label] directive [arguments] [comment]

where square brackets indicate that the item is optional or depends
on the particular context.

The rules for this syntax are:

1) The label, where present, MUST start at the beginning of
a line.

2) The opcode, or directive, must be preceded by one or
more spaces or tabs.

3) The opcode, arguments, and comment in whatever
combination, must be separated by spaces or tabs.

4) Arguments are separated by commas.

Note that any part of the source code may be in upper or lower case
at any point in the source file. The assembler ignores case at all
points, so that 'LABEL_NAME' is the same as 'label_name', and indeed
'LaBeL_nAmE'! All will be treated as the samEXPRESSIONSe label.

8

2.2 CONSTANTS

Constant values may be expressed in decimal, hexadecimal or binary.
Hexadecimal numbers are preceded by a dollar ($) sign, binary numbers
are preceded by a percent (%) sign. A value may also be a series of
characters in single or double quotes, for example 'h' or '1234/.
These are converted to their ASCII equivalent so that 'h' is
equivalent to $68 and '1234 is equivalent to $31323334. Only the
rightmost 4 characters are used.

2.3 EXPRESSIONS

Expressions consist of symbols, constants and operators. Expressions
are evaluated left to right with no precedence of operators. All
values are 32 bits with overflow ignored. The operators available
are:—

+ — (monadic and dyadic) ↑ (mod) ! (bit or)
~ (unary bit not) & (bit and) < (shift left) > (shift right)

Square brackets([]) are used in expressions to override operator
precedence rules.

Examples:

3 + [4*5] gives 23
3 + 4 * 5 gives 35
mask1 ! reg returns the result of 'or'ing the two values
Count < 4 returns the result of shifting value left 4 places
[8 ↑ 3+2]*2 returns 8 ((2+2)*2)

9

2.4 CURRENT PROGRAM POSITION

The current internal program-counter position is represented as an
asterisk (*).

BRA *—6

will cause a branch to the position 6 bytes before the program
counter's value at the start of the instruction. Note that this will
assemble as a displacement of —8, as the displacement is calculated
from the program counter's position after the instruction has been
fetched. It is a relative value.

2.5 EXPRESSION OPERANDS

An expression may be a single operand which has a value and a type.
The types supported are:

data register
address register
special register (CCR SR USP — see section 2.8)
relative
absolute
register list

Only relative and absolute values may be used as the operands of an
operator in an expression. Only '+' and *—' allow the use of relative
values as operands in the combinations ;

R+A (—>R)
A+R (—>R)
R-R (—>A)
R-A (—>R)

where R denotes a relative symbol (e.g a label) and A denotes an
absolute value (i.e. a constant value not dependent on where the
program is located).

A register list is a list of data and address registers or register
ranges separated by a slash (/). A register range is a pair of
registers both the same kind where the second has a higher number
than the first. (Of course the registers may also be symbols EQUated
to registers). For example:

entrymask EQU d4-d7/a2/a4-a6

This is the list d4/d5/d6/d7/a2/a4/a5/a6.

10

2.6 OPCODES

Opcodes are the mnemonics used to represent the 68000 instructions. A
list is given in chapter 6.

2.7 INSTRUCTION ARGUMENTS

The arguments of an instruction give it the source and destination of
the information, as necessary. They are in Motorola format. See
Chapter 6 for further information. Labels may be used for relative
branches and program counter relative addressing, and the assembler
will make the appropriate relative calculations. See below under
Labels.

2.8 SYMBOLS

Symbols are used to represent values, to make the code easily read
and easily altered. A symbol starts with a letter and may contain
letters, digits and underscores. Symbols longer than 30 characters
will be truncated to 30 characters.

Symbols are treated in exactly the same way as the values they
represent. With the exception of a label, a symbol MUST be defined
(by EQU or XDEF) on a line before its use, otherwise it will be
assumed to be a label.

A symbol may be EQUated to an expression, defined by XDEF or is
defined by making it a label at the start of a line.

There are several predefined symbols —

SP — stack pointer (EQU a7)
CCR — condition code register
SR — status register
USP — user stack pointer

These and the register symbols d0 — d7, a0 — a7 should not be used as
labels or redefined using EQU.

11

2.9 LABELS

Labels are used to mark a position in the program to be used for
loops, subroutine calls, program counter relative addressing, etc.
They must start at the beginning of a line. Unlike other symbols they
may be referred to in the text before definition.

Where used as an operand in an expression, a label will be assembled
as an offset relative to the beginning of the program, unless the
context forces it to be program counter relative (as a branch
destination say). The type of a label symbol is called relative. That
is, it is either relative to the start of the program or to the
current location.

Ten local labels, @0 to @9, may be used between ordinary labels.
Although these use less symbol table space they can encourage the
writing of difficult to read code. A meaningful label name should be
used where possible.

2.10 COMMENTS

Comments are pieces of text placed in the source code as information
to the writer of the code, or anyone else reading it. They are
ignored by the assembler.

Comments may be placed in the text either on separate lines, where
the first character on a line should be a semi-colon <;> or asterisk
<*>, or after an instruction. In this case they are the last item on
the line, and should be preceded by a semi-colon.

12

Chapter 3. ASSEMBLER DIRECTIVES

Assembler directives (also called pseudo-ops) are used to provide
information to the assembler, so that it will produce a suitable
machine code program. Some, such as Define Constant, actually place
values within the program. Others, such as Equate, merely provide
information about how to handle the following assembly language.

In the following sections curly brackets mean zero or more. Square
brackets mean optional. A Vertical bar indicates alternative
selection.

3.1 DC — DEFINE CONSTANT

Syntax: DC[.W|.L] expr { ,expr }

Allocates a number of words or long words with the initial values
given by the expressions. The expressions may be absolute or
relative. A relative value (label) is its offset from the program
start. If no .W or .L is given the default is DC.W.

Examples: DC.W 0, 50, $FFFF
DC.L 3, lab1, lab2, lab3

Syntax: DC.B (expr | string) { , (expr | string) }

Defines a number of bytes with initial values given by the
expressions or ASCII characters in a string. A string is a sequence
of characters enclosed in matching double or single quotes. A quote
within the string is written twice.

Examples: DC.B 'This is a string', 24, 34, 'another string'
DC.B 'You mustn''t do that', 10,""

13

3.2 DS — DEFINE STORAGE

Syntax: DS[.B|.W|.L] expr

Reserves an area of uninitialised memory at the current PC location,
the number of bytes, words or longwords being given by the
expression. The expression must evaluate to a constant, not a
relative value.

Examples: DS.B 20 reserves 20 bytes at current PC location
DS.L blocklen reserves blocklen long words

3.3 DCB — DEFINE CONSTANT BLOCK

Syntax: DCB[.B|.W|.L] expr1, expr2

Reserves a block of memory at the current program counter, the number
of bytes, words or longwords to be reserved being given by the first
expression. The whole block is initialised with the value given by
the second expression. Note that the first expression must evaluate
to a constant.

Example: DCB.W 30,1 reserve a block of 30 words initialised to 1

3.4 EQU — EQUATE

Syntax: symbol EQU expr

Equates the symbol with the value and type of the expression. The
expression must evaluate to a constant, relative value, address
register, data register or register list. The symbol MUST NOT be
referred to before the EQU otherwise it will be made a label and the
EQU will give an error.

3.5 ALIGN

Syntax: ALIGN or
 EVEN

Ensures that the code following the align is on a word boundary. Note
that all longwords and words are automatically aligned. A word of
warning, however, about the following piece of code.

14

DC.B 'hello' ; ends on odd boundary
Labelname

DC.W 20
.
.

Labelname should not be used to reference the area reserved using the
DC.W, since the label is not word aligned, but the word of storage
is. In this case use ALIGN before the label to force it to be word
aligned.

The following directives are used when you want the assembler to
produce linker format. This is invoked by the L option on assembly.

The output is known as Sinclair Relocatable Output File Format, and
is standardised for all products, such as compilers, for the QL. The
output uses a subset of the directives defined in the (unpublished)
Sinclair Research document entitled 'Sinclair relocatable object file
format' revision 3 dated 23rd August 1984.

3.6 XREF — EXTERNAL REFERENCE

Syntax: XREF symbol { , symbol }

This signifies that a label referenced within the program is defined
in another file. The assembler will make a special entry in its
output to indicate that the linker should substitute the value.

A linker is a special program designed to take several files, which
may be output by assemblers or compilers, and make a single
executable code file from them. XREF allows execution to be passed
to, or data to be accessed from, one of these other files. Symbols
introduced by XREF are relative values similar to ordinary labels.
They may not be used to initialise memory. A symbol in the XREF list
MUST NOT be referenced in the program before the XREF otherwise it
will be assumed to be an ordinary label and the XREF will give an
error.

15

3.7 XDEF — EXTERNAL DEFINITION

Syntax: XDEF — symbol { , symbol }

Leaves an entry in the output file to indicate to the linker program
the position of a label within this file. This allows the linker to
pass this information on to any files making an external reference to
it. The symbol MUST NOT be referred to before the XDEF.

3.8 CONDITIONAL ASSEMBLY

Syntax: IF expr
...
[ELSE]
...
ENDIF

The one-armed conditional is when the ELSE has been omitted. The code
between the IF and the ENDIF is only assembled if the expression
evaluates to a non-zero value. In the two-armed case, the code
between IF and ELSE is only assembled if the expression evaluates to
a non-zero value. Otherwise (i.e. with a zero valued expression), the
code between ELSE and ENDIF is assembled.

N.B. The expression must be of constant type.
Conditionals may not be nested.

16

Chapter 4. ERROR MESSAGES

The assembler produces the following messages to indicate a wide
range of faults in the source file. All messages are given as short
textual messages; this section gives further information and possible
causes.

There are, fundamentally, two kinds of error. Either an error which
stops assembly processing, or an error which produces incorrect
object code. The former includes such catastrophes as 'out of
memory', the latter such mistakes as 'Unknown instruction mnemonic'.
The first is fatal, and will cause processing to cease. The second
will be noted as an error, and may be examined by invoking the editor
(see section 7.8).

1) Unknown instruction mnemonic — the mnemonic has been mistyped
or is not a Motorola mnemonic

2) Bad length specifier — should be .b .w .l or .s depending on
the context

3) Wrong number of operands — refer to a Motorola instruction set
reference text to find out how many arguments the instruction
needs

4) Illegal operand(s) — refer to a Motorola instruction set
reference text to find out what arguments are legal for the
instruction

5) Bytes operation with address register — .b may not be used
where a destination is an address register

6) Relative not allowed as operand(s) — a label or other relative
type expression may only be used with + or — in certain
combinations and not at all with other operators

7) Missing symbol — a bracket or comma or other such symbol has
been omitted

17

8) Illegal operation on relative type — R + Rand A — R are
meaningless expressions

9) Not allowed as operand — a register list or register may not be
an operand of an operator

10) Expression expected

11) Bad digit

12) Bad character

13) Immediate data too large — the value is too big to fit into
the length specified or implied by the instruction or
directive

14) Bit number out of range — bit numbers must be in either the
range 0 — 7 or 0 — 32 depending on the context

15) Symbol already defined — a symbol may be defined once only
in an assembly

16) No label on line — the directive expects a label on the line,
for example the EQU directive

17) Unterminated string — the terminating quote which must match
the starting quote of a string, is missing

18) Relative branch out of range — the relative distance between a
branch and its destination is too much for the instruction
form. If a .s opcode extension has been used then it should be
removed. May also be caused by a short branch to the next
instruction.

19) Illegal trap number — trap numbers must be in the range 0 — 15

20) Offset exceeds 16 bits — a signed offset is outside the range
—32768 — +32767

21) Offset exceeds 8 bits — a signed offset is outside the range —
128 — + 127

22) Operand must be absolute — the operand of a monadic operator
may not be a relative type

23) Value must be in range | to 8

18

24) Length specifier not allowed here — the directive should not
have a .b .w .l or .S extension

25) Expression must be absolute

26) Illegal range — a register list range consists of ra-rb where
both ra and rb are the same type of register and the register
number of rb is greater than ra

27) Address register expected

28) Register expected — either a data or address register is
expected at this point

29) Quick value out of range — moveq values must be in the range —
128 — +127, other quick values must be in the range 1—8

30) @0 undeclared

31) @1 undeclared

32) @2 undeclared

33) @3 undeclared

34) @4 undeclared

35) @5 undeclared

36) @6 undeclared

37) @7 undeclared

38) @8 undeclared

39) @9 undeclared

40) Directive must only be used with linker option

41) External symbols must be relative — symbols which are imported
or exported must be labels

42) Undefined symbols — symbols have been referred to but not
defined

19

43) Extra symbols on line — spurious text has been left
unprocessed on the line. Either a semicolon is missing before
a comment or the previous text on the line contained syntax
errors, usually a missing comma or operator

44) Bad local label — a local label should be an 'at' sign (@)
immediately followed by a single digit

45) Illegal label — a symbol has been used which cannot be a label

46) External not allowed here — an external relative value should
only be used as a label

47) Symbol defined after use — only labels defined in the file may
be used before definition

48) Conditional may not be nested

49) Missing conditional — an IF or ENDIF has been omitted

20

Chapter 5. USING MACHINE CODE ROUTINES
IN BASIC AND PASCAL

5.1 INTRODUCTION

For many programmers, BASIC and Pascal prove adequate for writing
applications programs. However, having written a program in them, you
may well wish to make it smaller and/or faster. You may also set out
to write a program in a mixture of one of these and Assembler.

The following section sets out to show you how to add procedures and
functions to BASIC by using a commented example.

N.B. This section sets out only to be a simple guide to adding your
own procedures and functions to BASIC. The information in it is by no
means complete or definitive for all possible programs. If you wish
to write such procedures and functions you require fuller
documentation on QDOS, which is available from Computer One.

Should you wish to use machine code subroutines from Computer One
Pascal this chapter also contains an example program template to
illustrate one way of doing so. As you become more familiar with the
additional facilities available in Pascal you may find alternative
methods. Computer One Pascal already contains several routines to
efficiently implement memory access and data movement.

5.2 BASIC ENHANCEMENT

Adding assembly language procedures and functions to BASIC is a
fairly simple operation. Entries are added to BASIC's internal name
table, and the subroutines that are then called appear from BASIC as
if they has been included in the ROM.

The QL's operating system, QDOS, is used via a set of TRAPs and
VECTORs lying at the bottom of the ROM. These allow you to call parts
of QDOS whichever version of it you have. These are the only safe way
to use ODOS.

21

5.3 THE INITIALISATION SECTION

The names of the functions are added into BASIC's name table, to
initialise them before use, by a short routine; this loads a pointer
to a list of definitions into Al, and a vector into A2. It takes the
form:

LEA PROC_DEF,A1 ;pointer to definition table
MOVE BP_INIT,A2 ;initialise vector
JSR (A2) ;do it
RTS ;return to BASIC

It is worth noting that the first line references the label PROC_DEF
relative to the program counter. This is because, like all QL
assembly language programs, this routine is POSITION INDEPENDANT.
This means that wherever it is loaded into memory it will operate
correctly.

If you try to use a label in a position where it cannot be made
program-counter relative, for instance as a destination operand, then
the assembler will warn you with an error message.

Then the vector BP_INIT (BASIC Fn/Proc INITialise — $110) is loaded
into A2. BP_INIT has been previously EQUated to the value $110. The
MOVE instruction will automatically be assembled into a MOVEA
instruction. MOVEA defaults to word length, so the word value at the
address $110 is sign-extended into it, giving it the long-word value
stored as a word at this location.

This is then jumped to as a subroutine, and then finally a return is
made to BASIC.

5.4 THE DEFINITION TABLE

The definition table takes the form:

DC.W 2 ; number of procedures, 2 here
DC.W CON_OF-* ; word offset to 1st proc
DC.B a2-a1 ; length of name

@1 DC.B 'CURSON' ; name of first procedure
@2

22

ALIGN ; make even boundary
DC.W COFF_OF-* ; word offset to 2nd proc
DC.B @2-@1 ; length of name

@3 DC.B 'CURSOF' ; name
@4

ALIGN ; even boundary
DC.W 0 ; end of procedure definitions
DC.W 1 ; number of functions, 1 here
DC.W CONV_OF-* ; word length offset to first fn
DC.B @6-@5 ; name Length

@5 DC.B 'CONV$' ; name
@6 ALIGN ; even boundary

DC.W 0 ; end of function definitions

The table is in two sections, a list of procedure definitions, and a
list of function definitions. Each is preceded by a word indicating
how much space BASIC will need to add them, and terminated by a word
of 0. Function and procedure names should be no more than 7
characters long.

Each entry consists of a word length offset, a byte character count,
and the ASCII representation of the name. Each entry should start on
a word boundary. A word length offset is easily generated by the
assembler with DC. W, which is made program-counter relative when its
argument is a label by subtracting the current location counter (*).
The table above shows you the assembler syntax.

The table given, used as data for the program above, comes near the
start of the program. You may load the code into memory and invoke it
with the following:

100 REMark BASIC loader program
110 A=RESPR(512)
120 LBYTES MDV1_CURSE_CDE,A
130 CALL A

This reserves space in the resident procedure area, which ts intended
for this purpose; loads the executable code into it, and calls it.
This should pass execution to the subroutine above which will then
allow you to access your functions by inputting PRINT CONV$('ConVert
ME TO All ONe Case'), for example.

NOTE: CALL does not work reliably when a substantial BASIC program is
present in some QLs, so this setting up should be done by a small
BOOT program at start-up, before any large BASIC programs are loaded.
Note also that RESPR does not allow you to allocate space if there is
a job running.

23

The above lines of BASIC assume that you have assembled the code from
the file CURSE_ASM on some device and directed the code to a fille
MDV1_CURSE_CDE. They also illustrate how ANY machine code subroutine
may be called from BASIC.

5.5 THE EXAMPLE SOURCE

; Machine Code routines to add a cursor on/off facility and case
; converter function to BASIC
; Syntax: CURSON n turn on cursor in window #n
; CURSOF n turn off cursor in window #n
; CONVS (string) returns string all in upper case
;
;
; Symbol Definitions - must precede use
;
ERROR_BP EQU -15 ; QDOS bad parameter
CH_LENCH EQU $28
BV_RIP EQU $58
BV_CHBAS EQU $30
BP_INIT EQU $110
CA_GTINT EQU $112
CA_GTSTR EQU $116
SD_CURE EQU $E
SD_CURS EQU $F
;
; Initialisation routine

ADD_FUN
LEA PROC_DEF,A1 ; pointer to definition table
MOVE BP_INIT,A2 ; initialise vector
JSR (A2) ; do it
RTS ; return to BASIC

;
; Procedure definition table
;
PROC_DEF

DC.W 2 ; number of procedures, 2 here
DC.W CON_OF-* ; word offset to 1st proc
DC.B @2-@1 ; length of name

@1 DC.B 'CURSON' ; name of first procedure
@2

ALIGN ; make even boundary

24

DC.W COFF_OF-* ; word offset to end proc
DC.B @4-@3 ; Length of name

@3 DC.B 'CURSOF' ; name
@4

ALIGN ; even boundary
DC.W 0 ; end of procedure definitions
DC.W 1 ; number of functions, 1 here
DC.W CONV_OF-* ; word length offset to first in
DC.B @6-@5 ; name length

@5 DC.B 'CONVS' ; name
@6 ALIGN ; even boundary

DC.W 0 ; end of function definitions
;
; CODE FOR CONVS
;
CONV_OF

move CA_GTSTR, a2 ; get string argument from BASIC
jsr (a2)
bne.s EXIT ; error return

; ok
subq #1,d3 ; check if one parameter
bne.s ERR_BP ; error if not

; ok
move.w 0(a6,a1.l),d7 ; get length of string
move a1,a0 ; take copy of a1
addq.l #2,a0 ; increment pointer

SCAN_START
tst.w d7 ; are we at the end of string
beq.s SET_STACK ; leave if so
subq.w #1,d7 ; do another character
move.b 0(a6,a0.l),d1 ; get char
cmpi.b #'a',d1 ; is it lower case
blo.s NO_CONV
cmpi.b #'z'
bhi.s NO_CONV

; is lower case so convert
subi.b #'a'-'A',0(a6,a0.l)

NO_CONV
addq.l #1,a0 ; increment char pointer
bra.s SCAN_START

SET_STACK
moveq #1,d4 ; tell BASIC a string type has been

; returned
move.l a1,BV_RIP(a6) ; tell BASIC where its stack top is
clr.l d0 ; no errors
rts

25

;
ERR_BP

moveq #ERROR_BP, d0 ; bad parameter
EXIT

rts
;
; CURSOR ON/OFF routines
;
CON_OF

move.b #SD_CURE, d5 ; cursor enable
bra.s CURS_START

COFF_OF
move.b #SD_CURS, d5 ; cursor disable

CURS_START
moveq #1, d4 ; default channel id
move CA_GTINT, a2 ; also puts stack ptr into a1
jsr (a2)
bne.s EXIT ; error
subq.w #1, d3 ; check there is one parameter
bne.s ERR_BP
move.w 0(a6,a1.l), d4 ; channel number into d4
addq.l #2, a1 ; unstack it
move.l a1, BV_RIP(a6) ; tell BASIC about stack top
mulu #CH_LENCH, d4 ; look up channel table
add.l BV_CHBAS(a6), d4 ; d4& now has channel id offset
move.l (a6,d4.l), a0 ; extract channel id
move.l #500, d3 ; timeout
move.b d5, d0 ; operation to perform, on/off
trap #3 ; error/ok in dO on return
rts
END ; of assembly

5.6 USING MACHINE CODE ROUTINES IN PASCAL

Machine code routines may be called from Computer One Pascal by means
of the call procedure. This takes an address, a vector of data
register values and a vector of address register values. The types of
these are all predefined in Computer One Pascal. The call procedure
causes the registers to be loaded with the values in the arrays and
execution to commence at the specified address. The machine code
routine should, on exit, leave the stack as it found it on entry.
Just prior to return, the value in the registers will be copied into
the arrays. This is an extremely simple and easy to use mechanism.

The machine code routine must be loaded into memory before execution
and must reside in memory until it no longer is needed. Space must be
allocated to hold it. There are three main ways of allocating space

26

− use an array declared at the outer level

− use an array local to a procedure or function BUT remember this
will disappear on exit from the procedure or function

− allocate an array on the heap

The location of an array or variable in Computer One Pascal may be
found by using the loc function. This returns a value of type address
which may be directly passed to the call procedure. The machine code
file may be loaded into memory using the Ibytes procedure. (Note that
Ibytes can be used to load any file into memory, for example a data
file or text file).

A section of a Pascal program is given here to demonstrate the
technique.

5.7 PASCAL SOURCE TEMPLATE

program mac;
const
 codelength = ... ; { size of file to be lbyted }
...
var
 d: dreg ; { array [0..7] of integer (predeclared type) }
 a: areg ; { array [0..5] of integer (predeclared type) }
 {note a6 and a7 are sacrosanct
 { now reserve space to hold the machine code }
 code: array [1..codelength] of char; { codelength bytes }
 entry: address ;
...
begin

{ load in the code }
entry:= loc(code) ;
lbytes('mdv._..._cde', entry) ; { appropriate file name }
{ now set up the call }
d[O]:= ... ; a[O]:= ... ; { only set up registers needed }
call(entry, d, a) ; { call the machine code routine }
... := d[O] ; ...:= a[O] ; { etc as needed }
...
end.

You may of course wish to have multiple sets of address and data
register values. using the appropriate sets on each call.

27

Chapter 6. INSTRUCTION SET SUMMARY

6.1 OPCODE EXTENSIONS

The length extensions for each instruction can be some or all of .b
(byte), .w (word) or .l (long-word). The length entry for each
instruction shows the initials of the allowable lengths, where
relevant. Where a length is needed by an instruction but the length
specifier is missing .w is assumed except where the instruction does
not accept this (check with an instruction set reference). Branch
instructions may also use the .s (short) extension.

The argument forms are summarized below.

The flags are shown according to the following convention:

* = set according to the result of the operation
- = not affected
0 = cleared
1 = set
U = undefined after operation

6.2 INSTRUCTIONS

Mnemonic Argument forms Flags Operation
Length XNZVC

ABCD B Dn,Dn *UxUx Add decimal with extend
B —(An),-(An) *U*xUx

ADD BWL <ea>,Dn ***** Add binary
BWL Dn,<ea> *****

ADDA WL <ea>,An ----- Add address

28

Mnemonic Argument forms Flags Operation
Length XNZVC

ADDI BWL #<data>,<ea> ***** Add immediate

ADDQ BWL #<data>,<ea> ***** Add quick

ADDX BWL Dn,Dn ***** Add extended
BWL —(An),—(An) *****

AND BWL <ea>,Dn -**00 And logical
BWL Dn,<ea> -**00

ANDI BWL #<data>,<ea> -**00 And immediate
B #<data>,CCR *****
W #<data>,SR *****

ASL/ASR ***** Arithmetic shift
BWL Dn,Dn ***** left/right
BWL #<data>,Dn *****
W <ea> *****

Bcc S <label> ----- Branch conditionally

BCHG L Dn,Dn --*-- Test a bit and change
L #<data>,Dn --*--
B Dn,<ea> --*--
B #<data>,<ea> --*--

BCLR L Dn,Dn --*-- Test a bit and clear
L #<data>,Dn --*--
B Dn,<ea> --*--
B #<data>,<ea> --*--

BRA S <label> ----- Branch always

BSET L Dn,Dn --*-- Test a bit and set
L #<data>,Dn --*--
B Dn,<ea> --*--
B #<data>,<ea> --*--

BSR S <label> ----- Branch to subroutine

29

Mnemonic Argument forms Flags Operation
Length XNZVC

BTST L Dn,Dn --*-- Test a bit
L #<data>,Dn --*--
B Dn,<ea> --*--
B #<data>,<ea> --*--

CHK W <ea>,Dn -*UUU Check register against bounds

CLR BWL <ea> -0100 Clear an argument

CMP BWL <ea>,Dn -**** Compare

CMPA WL <ea>,An -**** Compare address

CMPI BWL #<data>,<ea> -**** Compare immediate

CMPM BWL (An)+,(An)+ -**** Compare memory

DBcc W Dn,<label> ----- Test cond, decrement
and branch

DIVS W <ea>,Dn -***0 Signed divide

DIVU W <ea>,Dn -***0 Unsigned divide

EOR BWL Dn,<ea> -**00 Exclusive or logical

EORI BWL #<data>,<ea> -**00 Exclusive or immediate
B #<data>,CCR *****
W #<data>,SR *****

EXG L Rn,Rn ----- Exchange registers

EXT WL Dn -**00 Sign extend

JMP <ea> ----- Jump

JSR <ea> ----- Jump to subroutine

LEA <ea>,An ----- Load effective address

LINK An,#<disp> ----- Link and allocate

30

Mnemonic Argument forms Flags Operation
Length XNZVC

LSL/LSR
BWL Dn,Dn ***0* Logical shift
BWL #<data>,Dn ***0* left/right
W <ea> ***0*

MOVE BWL <ea>,<ea> -**00 Move data from source to
W <ea>,CCR ***** destination
W <ea>,SR *****
W SR,<ea> -----
L <ea>,USP -----
L USP,<ea> -----

MOVEA L <ea>,An ----- Move to address register

MOVEM WL <reg list>,<ea> ----- Move multiple registers
WL <ea>,<reg list> -----

MOVEP WL Dn,d(An) ----- Move peripheral data
WL d(An),Dn -----

MOVEQ L #<data>,Dn -**00 Move quick

MULS W <ea>,Dn -**00 Signed multiply

MULU W <ea>,Dn -**00 Unsigned multiply

NBCD B <ea> *U*U* Negate decimal with extend

NEG BWL <ea> ***** Negate

NEGX BWL <ea> ***** Negate with extend

NOP ----- No operation

NOT BWL <ea> -**00 Logical complement

OR BWL <ea>,Dn -**00 Inclusive or logical
BWL Dn,<ea> -**00

31

Mnemonic Argument forms Flags Operation
Length XNZVC

ORI BWL #<data>,<ea> -**00 Inclusive or immediate
B #<data>,CCR *****
W #<data>,SR *****

PEA L <ea> ----- Push effective address

RESET ----- Reset external devices

ROL/ROR
BWL Dn,Dn -**0* Rotate (without extend)
BWL #<data>,Dn -**0* left/right
W <ea> -**0*

ROXL/ROXR
BWL Dn,Dn ***0* Rotate with extend
BWL #<data>,Dn ***0* left/right
W <ea> ***0*

RTE RTE ***** Return from exception

RTR RTR ***** Return and restore
condition codes

RTS RTS ----- Return from subroutine

SBCD B Dn,Dn *U*U* Subtract decimal with extend
B —(An),—-(An) *U*U*

Scc B <ea> ----- Set according to condition

STOP #<word> ***** Load status register and stop

SUB BWL <ea>,Dn ***** Subtract binary
BWL Dn,<ea> *****

SUBA WL <ea>,An ----- Subtract address

SUBI BWL #<data>,<ea> ***** Subtract immediate

SUBQ BWL #<data>,<ea> ***** Subtract quick

32

Mnemonic Argument forms Flags Operation
Length XNZVC

SUBX BWL Dn,Dn ***** Subtract with extend
BWL —(An),—(An) *****

SWAP W Dn -**00 Swap register halves

TAS B <ea> -**00 Test and set an argument

TRAP #<vector> ----- Trap

TRAPV ----- Trap on overflow

TST BWL <ea> -**00 Test an argument

UNLK An ----- Unlink

6.3 INSTRUCTION ARGUMENTS

The arguments follow the instruction in the source file. Where two
are allowed, they are always in the order <source>,<destination>.
Note that for registers and register lists, symbols EQUated to them
may be used. For labels, relative expressions may be used. For other
data such as offsets and immediate values expressions may be used.

The types shown above are:

Rn Any address or data register
Dn Any data register
An Any address register
<label> A label or other relative value
<ea> An effective addressing mode
<data> Immediate data
<reg list> A list of registers (see 2.5)
<vector> Trap number in the range 0—15
<word> Word to be loaded into the status register
<disp> A sixteen bit stack pointer displacement
d A displacement
cc A condition code — CS, CC, EQ, NE, MI, PL,

VS, VC, GT, GE, LT, LE, HI,
HS (same as CC), LS, LO (same as CS), T, F

33

6.4 ADDRESSING MODES

NOTE THAT NOT ALL ADDRESSING MODES ARE ALLOWED WHERE <ea> IS SHOWN
ABOVE. For further information, a 68000 reference work should be
used. Effective addresses are categorised into data, memory, control
and alterable modes, or a combination of these. Where you get an
illegal operand error it probably means you have used the wrong kind
of effective address.

The addressing modes are:

Addressing mode Syntax

Data register direct Dn
Address register direct An
Address register indirect (An)
Address register indirect with post-increment (An)+
Address register indirect with pre-decrement —(An)
Address register indirect with displacement d(An)
Address register indirect with index and displacement d(An,Ri)
Program counter relative and displacement label
Program counter relative with index and displacement label(Ri)
Immediate #<data>
Absolute address expression

Zero displacements for d(An) and d(An,Ri) must be present and may not
be omitted. In addition to the syntax given under arguments above,
note that:

Ri - Any register followed by an optional .w or l,
where word length is the default if missing.

Note also that the forms label(PC) and label(PC,Ri) are not available
but are equivalent to label and label(Ri) respectively.

34

6.5 GENERICS

The assembler accepts generic instructions and assembles the
appropriate form.

For example add is assembled into adda or addi depending on the
arguments.

The generics are listed below.

Generic May be assembled into

add adda addi
and andi
cmp cmpa cmpi cmpm
eor eori
move movea
or ori
sub suba subi

35

Chapter 7. USING THE EDITOR

The multitasking editor has been designed with ease of use in mind.
It makes use of the cursor control keys, situated on either side of
the space bar, and the function keys on the left hand side of the QL
keyboard. It also provides a menu to allow you to select file saving
and loading options easily. The editor is loaded by using the EXEC
command from BASIC. This allows the editor to be used while BASIC or
other programs are running. Multi-tasking with the editor is
described in section 7.2.

7.1 EDIT FILE FORMAT

Edit files consist of lines of printable characters, the lines being
separated by the line feed character. These files are called text
files. Although the editor only allows you to create text files it
does not check, when loading a file, that the file only contains
printable characters and line feeds. However you are strongly
recommended to edit only text files.

Edit lines can only be as long as the edit window. However there is a
special character '<<', which, if it occurs as the first character on
a line, will be treated as a concatenation character. When a file is
loaded, any lines longer than the edit window will automatically be
split, with the concatenation character being inserted at the split.
When a file is saved, a line will be joined to the previous line if
the concatenation character appears at the beginning of the line. If
this character is deleted it causes a permanent split in the line.

7.2 EDITING WHILE RUNNING THE ASSEMBLER

The editor can be used while the assembler is running. Type CNTL-C to
get the cursor flashing in the BASIC console then type

EXEC <device>_editor (for example EXEC mdvi_editor)

36

You can then edit while the assembly is taking place by pressing
CNTL-C. The editor will ask how much workspace is required. You
should enter the size of the largest file you wish to edit PLUS how
much extra you expect it to grow. If there is not enough contiguous
memory free the editor will beep and prompt you again. If it can find
it then the four editor windows are displayed.

When you are in the editor and you wish to redisplay the screen,
press F4. To get back to the assembler or BASIC (or indeed any other
job you may have running) press CNTL-C repeatedly until the flashing
cursor appears in the area of the screen it last was for the
particular job you wish to return to.

Note that the assembler has less work space if the editor is running.

7.3 EDITING A FILE

When the editor is invoked a new screen appears with four windows; an
edit window, in which the editing of text takes place; a prompt
window, in which the editor displays prompts and receives input (for
example a file name); a help/error window, in which error and help
messages are displayed; a lift window — the lift facility is
described in section 7.7. A menu will then appear on the screen,
allowing you to choose the file you wish to edit or to choose to edit
a new file. This menu, called the Editor File Menu, is described in
section 7.4. You may wish to move or copy sections of text. This may
be achieved using cutting and pasting with the Edit Menu as described
in section 7.5.

When a file has been loaded the edit screen will appear with the
first few lines of the file. The cursor, a solid green rectangle,
will appear over the first character of the file. If a new file is
being edited the edit window will be blank, except for the cursor
which will be at the top left corner. The cursor represents the
current editing position in the file and all editing operations take
place at the cursor position. Whether a new file is being edited or
an existing file is being edited, the operation of editing the file
is exactly the same and is described in the following sections.

7.3.1 Moving the Cursor

The cursor can be moved anywhere in the file by using the four cursor
control keys which are situated on either side of the space bar on
the QL keyboard. Each of the keys moves the cursor one character
position in the direction shown on the key. There are several special
cases which affect the movement of the cursor:

37

1) If the cursor is moved right when it is at the end of a line it
moves to the start of the next line.

2) If the cursor is moved left when it is at the beginning of a
line it moves to the end of the previous line.

3) If the cursor is moved up or down and the previous or next line
is shorter than the current one the cursor moves to the end of
the new line.

4) If the cursor moves off the top or bottom of the screen the
text is moved down or up so that a new line appears at the top
or bottom respectively.

5) The cursor remains stationary if any attempt is made to move it
off the beginning or end of the file.

The ALT key and left or right cursor keys can be used to move to the
beginning or end of the current line.

7.3.1.1 Paging

If the SHIFT key and the cursor up or cursor down keys are pressed
together, the window will scroll down or up by the number of lines
that will fit in the window. The cursor is set to the middle of the
window.

7.3.2 Inserting Text

To insert text simply start typing characters at the keyboard. Each
character is inserted at the cursor position, and the character at
the cursor position and all characters to the right are shifted right
by one character position. When the cursor is the last character on a
line and a new line is required press the ENTER key and a blank line
will be inserted below the current line, with the cursor at the start
of the new line. The editor has an auto indent facility which sets
the cursor under the first non-blank character of the previous line
when a new line is taken.

Lines can only be as long as the window and any attempt to insert a
character which will make the line too long, will cause the QL to
emit a beep and the character will not be inserted. However the end
of line character can be inserted and if you wish to have the line
longer than the edit window, you can continue the line by inserting
the special character '<<' at the beginning of the next line.

38

This character is keyed in by pressing the CNTL, SHIFT and X keys
together.

The editor will automatically remove this character and the preceding
end of line character when the file is saved.

7.3.3 Deleting Text

The character to the left of the cursor can be deleted by pressing
the CNTL key and the cursor left key together. The cursor and all
characters to the right are shifted left by one character position.
This is the opposite of inserting a character and is useful for
correcting typing errors as text is being entered.

The character under the cursor can be deleted by pressing the CNTL
key and the. cursor right key together. The cursor remains in the
same position and all chacters to the right of the cursor are shifted
left by one character position.

If the CNTL, ALT and cursor left(or right) keys are pressed together
all characters from the cursor position to the start (or end) of the
line are deleted.

7.3.4 Splitting and Concatenating Lines

A line is split by positioning the cursor at the position in the line
where the split is required and pressing ENTER. This causes the
character under the cursor and all characters to the right to be
inserted below the line.

Two lines are concatenated by deleting the line feed at the end of
the first of the two lines. The line feed is always the last
character in any line and is represented as a blank. The line feed is
deleted in the same way as any other character, using the CNTL and
cursor right keys if the cursor is over the line feed, or using the
CNTL and cursor left keys if the cursor is at the start of the next
line. When the two lines are concatenated all lines below will be
scrolled up by one line. If concatenating the two lines will make the
resulting line longer than the edit window the QL emits a beep and
the line feed character is not deleted. However the two lines can be
concatenated when the file is saved, by inserting the concatenation
character '<<" at the beginning of the second line. This character is
entered by pressing the CNTL, SH#FT and X keys together.

39

7.3.5 Finishing the Edit Session

When you have finished editing the file, or wish to save the file and
continue editing the same file or another file, the function key F1
can be pressed to select the Editor File Menu which allows the file
to be saved by selecting one of the options.

7.4 THE EDITOR FILE MENU

This menu appears on the screen when the editor is initially run, or
when the function key F1 is pressed. When the menu is displayed it
appears with a number of options. Each option is numbered and is
selected by pressing the required number or using the cursor up and
cursor down keys to step through the options. The currently selected
option is always highlighted. When the required option has been
selected the ENTER key should be pressed to use the option. In
certain cases some of the options are unavailable, for example the
save options cannot be used when no file is currently being edited.
When an option is unavailable it is displayed in red (options are
normally displayed in white) and cannot be selected using the
numeric or cursor keys. You can press the F1 key again if you want to
leave the File Menu and return to the edit window. When you are
prompted for a file name you can just press ENTER to return to the
menu.

Each of the options is described below.

7.4.1 Load File

If this option is selected and a file is currently being edited, you
are asked if you wish to save the changes (if the file has been
altered). If you answer yes and the file is not a new file, it is
saved, otherwise the prompt

save to which file:

appears in the message window and the file will be saved with the
entered file name. When the current file has been saved, or no file
is currently being edited, the message

load which file:

appears in the message window. The editor then loads the given file
and the edit window appears with the first few lines of the file. You
can now start editing the file.

40

If the file name given has the extension '_asm' the editor checks if
there is also a file with the same name, but with the extension
'_err'. If one exists the editor automatically uses the '_err' file
to produce a listing which allows you to see the error messages
produced when the specified file was last compiled. The Edit listing
facility is described in section 7.8.

7.4.2 Create New File

If this option is selected and a file is currently being edited the
same procedure is carried out as described for the option 4.4.1. The
edit window is then cleared and you can start editing a new file.

7.4.3 Read File

If this option is selected you will be prompted for a filename. A
copy of the file will be inserted at the cursor position.

7.4.4 Save a Copy

This option is only available when a file is currently being edited.
The message

save to which file:

appears in the message window and the file is saved with the given
file name. You can then continue editing the same file. Note that
saving a copy with a given file name does not affect the name of the
file being edited. i.e. the file being edited still has its original
file name.

7.4.5 Save and Continue

This option is available only if a file is currently being edited and
it does not contain error text. (Use the 'Remove error text' option
to delete error text). If the file being edited is a new file, the
message

save to which file:

is displayed in the message window and the file is saved with the
given name. You can then continue to edit the file.

41

7.4.6 Save Listing

This option is only available if the file has had an error file
merged with it to make it a listing.

The listing, the file with the embedded error messages, is saved to a
file with the same name as the file being edited, except that the
extension '_lis' is used. This option is useful if you wish to print
the listing file. When the listing has been saved you can continue to
edit the file.

7.4.7 Remove Error Text

This option is only available if you are editing a listing. It should
be used only after you have corrected the errors indicated by the
merged error file. When selected the error text is removed and the
file no longer is a listing. Removing the error text allows a copy of
the file to be saved or the save and continue option to be selected.

7.4.8 Save and Kill

This option is only available if a file is currently being edited. If
an existing file is being edited the file is saved with the existing
file name, otherwise the file is a new file and the message

save to which file:

appears in the message window and the file is then saved with the
given file name.

When the file has been saved the editor job is deleted and you should
press CNTL C to return to BASIC. Note that the editor will have to be
reloaded if you use this option.

7.4.9 Kill

This option deletes the editor job without saving the changes and you
should press CNTL-C as needed to return to BASIC. Note the editor
will have to be reloaded if this option is chosen. If a file is
currently being edited the message

Lose changes (y/n)?

is displayed in the message window and only if you enter 'Y' or 'y'
will the editor be exited. Otherwise the edit window will be
redisplayed and you can continue to edit the file.

42

7.5 EDIT MENU

This menu appears when the F5 key is pressed. It has four options

— cut pieces of text from the edit file
— copy pieces of text from the edit file
— paste pieces of text into the edit file
— display the last piece of text cut or copied

To leave the edit menu you press F1. Each of the options are
described below. Some options expect a marker to be set. This is
described in the following section.

7.5.1 Inserting a Marker

A marker is set in the text by pressing the CNTL and F4 keys
together. The character at this position is shown in reverse video.
Only one position in the file may be marked at one time. The marker
will be removed by any action except moving the cursor (either with
the cursor keys, paging or the lift). The marked character will only
be displayed in inverse video until it moves off the screen.

7.5.2 Cut

This option is only available if a marker has been set. It allows you
to remove a piece of text from the edit file and save it in an
internal buffer. The contents of this buffer can then be pasted into
another part of the file. To cut text, set a marker (CNTL-F4) at the
start of the text to be removed. Then place the cursor after the text
to be cut. Now press F5 to get the edit menu, select the cut option
and press ENTER. The text will be removed from the file but will
remain available to be subsequently pasted. The text cut includes the
marked character but does not include the character at the cursor.

You will only be allowed to cut if there is sufficient contiguous
free memory to act as the internal buffer. Any existing text in the
internal buffer will be deleted before the cut.

43

7.5.3 Copy

This is similar to the cut option except that the text selected is
copied into the internal buffer without being removed from the edit
file.

You will only be allowed to copy if there is sufficient contiguous
free memory to act as the internal buffer. Any existing text in the
internal buffer will be deleted before the copy.

7.5.4 Paste

This option is only available if there is some text in the internal
buffer, that is, if you have cut or copied text. The cursor should be
moved to where you wish the text to be pasted. Press F5 to get the
edit menu then select paste and press ENTER. The text in the internal
buffer is inserted at the current cursor position unless the
resulting file is too big for the workspace in which case an error
will occur and the paste will not proceed.

7.5.5 Show Buffer

You may examine the contents of the internal buffer by pressing F5 to
get the edit menu, selecting the show buffer option and pressing F5.
The buffer contents are then displayed.

7.6 STRING SEARCH

The string search is initiated when the function key F2 is pressed.
It searches for a given string from the current cursor position. When
F2 is pressed the message

search for which string:

is displayed in the message window. You should then enter the
required string. If the string is found in the text the cursor is set
to the character after the string in the text. If the string is not
found the cursor position remains as it was and a beep sounds. If F2
is pressed together with the SHIFT key, a search is made for the
string specified in the last search. If, when the prompt for a string
is displayed, just the ENTER key is pressed, you will immediately
return to the editor.

44

7.7 EDITOR LIFT

The lift is a means of moving through a file quickly and easily.
While in normal edit mode the lift arrow moves up and down as the
cursor is moved up and down through the text. The top of the lift
window represents the top of the file, the bottom of the lift
represents the bottom of the file and the lift arrow represents the
cursor position in the file.

When the function key F3 is pressed the editor goes into lift mode.
Lift mode allows you to move the lift arrow by using the up and down
cursor keys (for extra speed use the ALT key and cursor up or
down). When F3 is pressed again the editor returns to the normal
edit mode with the cursor in the position implied by the lift arrow.
This is most useful for long files where paging many times becomes
tiresome.

7.8 EDIT LISTING FACILITY

This facility allows Assembly language programs to be edited, while
looking at any error messages produced when the program was last
assembled. The assembler produces a file with the extension '_err',
which contains information about the errors. If you choose to edit an
Assembler file (extension _asm) and an '_err' file exists for it,
then the editor automatically uses the '_err' file to produce a
listing, which appears in the edit window as a normal file. Below
each line of the file which had a compilation error, is a copy of the
line and the error messages. Each error message is 'bracketed' by the
character ' ', which cannot be deleted or inserted in the editor by
the user.

The file may be edited as normal and when it is saved any parts of
the file enclosed in the ' 's are not written to the microdrive file.
Thus the error messages are removed when the file is saved. If, when
saving the file, the save listing option is chosen (see 7.4.6) the
whole file, including the error messages, are saved to a file with
the same name as the Assembler file, but with the extension lis'.

45

INDEX

A
Absolute Values 10
ADDRESSING MODES 34
ALIGN 14
Assembler Options 5

B
BACKING UP 4
BASIC 21
BIBLIOGRAPHY 2

C
COMMENTS 12
CONDITIONAL ASSEMBLY 16
CONSTANTS 9

D
DEFINE CONSTANT 13
DEFINE CONSTANT BLOCK 14
DEFINE STORAGE 14
DIRECTIVES 13

E
EDITOR 36
EQUATE 14
Error Messages 6
ERROR MESSAGES 7, 17
EVEN 14
EXPRESSIONS 8, 9

F
Filenames 5

G
GENERICS 35

I
INSTRUCTION ARGUMENTS 33

INSTRUCTION SET 28

J
Job, Option 5

L
LABELS 12
Linker Format 5, 15
Listing Facility 6
Local Labels 12

M
Memory 6
Multitasking 2
MULTITASKING 5

O
OPCODE EXTENSIONS 28
Options 5

P
PASCAL 26
Printer, Listing 6
Program Counter 10

R
Register List 10
Relative Values 10

S
SOURCE CODE REQUIREMENTS 8
Stack Pointer 11
Status Register 11
SUMMARY 28
SYMBOLS 11

X
XDEF 16
XREF 15

46

Computer One — Software Problem Report — ASSEMBLER

Name.............................. Return to:

Address........................... Computer One Ltd.,
Science Park,

.................................. Milton Road,
Cambridge CB4 4BH.

..................................

Telephone Number:

Nature of Problem (tick): Documentation error[] Software error[]

QDOS Version No.

Master Cartridge Name.................................

Software Error: Please describe problem in as much detail as
possible, giving the keystroke sequence which caused the error.
(enclose listing if possible) —

Documentation Error: Please include page number in error description

Comments or Enquiries:

	INTRODUCTION
	Chapter 1. USING THE ASSEMBLER
	1.1 BACKING UP
	1.2 OPERATION AND MULTITASKING
	1.3 COMPLETION
	1.4 USING THE CODE PRODUCED FROM THE ASSEMBLER

	Chapter 2. SOURCE CODE REQUIREMENTS
	2.1 SOURCE LINE FORMAT
	2.2 CONSTANTS
	2.3 EXPRESSIONS
	2.4 CURRENT PROGRAM POSITION
	2.5 EXPRESSION OPERANDS
	2.6 OPCODES
	2.7 INSTRUCTION ARGUMENTS
	2.8 SYMBOLS
	2.9 LABELS
	2.10 COMMENTS

	Chapter 3. ASSEMBLER DIRECTIVES
	3.1 DC — DEFINE CONSTANT
	3.2 DS — DEFINE STORAGE
	3.3 DCB — DEFINE CONSTANT BLOCK
	3.4 EQU — EQUATE
	3.5 ALIGN
	3.6 XREF — EXTERNAL REFERENCE
	3.7 XDEF — EXTERNAL DEFINITION
	3.8 CONDITIONAL ASSEMBLY

	Chapter 4. ERROR MESSAGES
	Chapter 5. USING MACHINE CODE ROUTINES
	5.1 INTRODUCTION
	5.2 BASIC ENHANCEMENT
	5.3 THE INITIALISATION SECTION
	5.4 THE DEFINITION TABLE
	5.5 THE EXAMPLE SOURCE
	5.6 USING MACHINE CODE ROUTINES IN PASCAL
	5.7 PASCAL SOURCE TEMPLATE

	Chapter 6. INSTRUCTION SET SUMMARY
	6.1 OPCODE EXTENSIONS
	6.2 INSTRUCTIONS
	6.3 INSTRUCTION ARGUMENTS
	6.4 ADDRESSING MODES
	6.5 GENERICS

	Chapter 7. USING THE EDITOR
	7.1 EDIT FILE FORMAT
	7.2 EDITING WHILE RUNNING THE ASSEMBLER
	7.3 EDITING A FILE
	7.3.1 Moving the Cursor
	7.3.1.1 Paging
	7.3.2 Inserting Text
	7.3.3 Deleting Text
	7.3.4 Splitting and Concatenating Lines
	7.3.5 Finishing the Edit Session

	7.4 THE EDITOR FILE MENU
	7.4.1 Load File
	7.4.2 Create New File
	7.4.3 Read File
	7.4.4 Save a Copy
	7.4.5 Save and Continue
	7.4.6 Save Listing
	7.4.7 Remove Error Text
	7.4.8 Save and Kill
	7.4.9 Kill

	7.5 EDIT MENU
	7.5.1 Inserting a Marker
	7.5.2 Cut
	7.5.3 Copy
	7.5.4 Paste
	7.5.5 Show Buffer

	7.6 STRING SEARCH
	7.7 EDITOR LIFT
	7.8 EDIT LISTING FACILITY

	INDEX

