
Page 4

The Game of Minesweeper

Minesweeper is a Single-player Puzzle Game where success is largely contingent on

being able to eliminate all possible positions of the distributed Mines within the shortest

amount of time. Minesweeper was first introduced as a Mainframe Game of the 1960

and 1970’s it then became popular as part of the Puzzle Video Game Genre during the

1980’s. Each Game starts out with a grid of unmarked squares. You Click on a square

to reveal its Status and some of the surrounding squares or Mark it with a Flag as one

holding a Mine. The object is to Locate and Mark all of the "Mines" in the shortest

possible time. If a player Clicks an unmarked square that is mined, the game ends.

The difficulty levels were Beginner, Intermediate, and Expert. Beginner usually came

with a total of 10 Mines and a board size either 8×8, 9×9, or 10×10. Intermediate with

40 Mines and larger board sizes up to 16×16. Expert had 99 Mines and a grid of 16×30

(or 30×16). The eighty’s introduction was partly due to encourage use of the mouse, the

left button (Spacebar) for Status and the right button (Enter) to Mark with a Flag.

The player starts on a safe square and Click’s to reveal a

number on the square occupied and then some of the

surrounding squares. The numbers represent how many

mines are adjacent to the current square. For example, if a

square has a "3" on it, then there are 3 mines placed in the

surrounding squares. The mines could be positioned above,

below, left or right, or in one of the four corners diagonally

positioned squares.

Apart from squares adjacent to the boundaries and comers of the board, a square has the

possibility of each of the surrounding squares holding a mine. Counting the possible

mines this would be between zero and eight.

Page 5

Minesweeper Logic or Probability

This game can be considered to be played as one of Logic or of Probability. Although

technically Probability will include some level of Logic. If Logic suggests a mine is

occupying a position, then in all Probability it has considerable certainty of being correct.

Local Probabilities
The squares shown has two with Flags where mines have been

identified. For Square with the number 3 only one other Mine

needs to be identified and this can only be in the Square

shown in RED.

This is shown to be correct as the Squares with a 1 are also

satisfied by the Mined Square shown in RED.

Local Probability Conflicts

The squares with a Flag are those with a

Mine. Squares in RED/ WHITE are where

the other Mine maybe located. This is

implied by the numbers 4,3,2,1 shown in

the adjacent squares. Note that in the

surrounding grid of the Square containing a

4 it already has four Flags, so its true value

is 5. It can’t be 6 as this would break with

the numbering of the other Squares.

Clearly either square A or B containing a Mine will satisfy the squares with numbers

4,3,2,1. If the choice is simply between A or B, which is it? Surprisingly by taking the

lowest number square counts adjacent to a potential Mine square, in this case B, more

often than not turns out to be the right choice.

QBITS APM

The 1980’s QBITS first version of a Minesweeper game was called Anti-Personnel

Mine Detection (APM). However today with many Charities and Government

Organisation providing schemes for clearing minefields of old and recent conflicts,

QBITS Mine Detector is a Title perhaps more succinct. Changes to the display layout

follow similarities with the other QBITS Games with this collection.

QBITS Mine Detector Game

Press (N) to start a New Game. The Aim of the Game is to Mark with a Flag all of the

Mines in the grid and complete this within the Time Limit of 300sec (GTime) which can

be altered (see code line 1010).

Use the Cursor keys to move the highlight to a selected square on the grid. Click with

Spacebar to reveal Squares Status or use Enter to Mark with a Flag. To add more

difficulty QBITS Mine Detector counts surrounding mines to a max of four. Therefore,

it is necessary to review several adjacent squares to determine if a mine is present. On a

few occasions this will simply come down to a best guess.

3

1 1

Page 6

QBITS Mine Detector Code

1000 REMark QBITS_MDETR_bas [QBITS Mine Detector 2024 Review - QPC2] vM20

1002 dev$=’win1_’:MODE 8:gx=0:gy=0: :REMark Basic Settings

1004 WHEN ERRor :CONTINUE:END WHEN

1006 REMark Import QBITSCongif settings - QPC2

1007 OPEN_IN#9,dev$&’QBITSConfig’:INPUT#9,gx\gy\dn$:close#9

1010 Init_win:GTime=300: MF_Game

1012 DEFine PROCedure Init_win

1013 WINDOW#2,512,222,gx,gy :PAPER#2,0:BORDER#2,1,3:CLS#2

1014 WINDOW#1,362,176,gx+136,gy+36:PAPER#1,0:BORDER#1,1,5
1015 WINDOW#0,512, 34,gx,gy+222 :PAPER#0,0:BORDER#0,1,3:CLS#0

1016 CSIZE#2,2,1:OVER#2,1:SCALE#1,120,0,0:CSIZE#0,2,0

1017 INK#2,2:FOR i=0 TO 1:CURSOR#2,4+i,8:PRINT#2,'QBITS MINE Detector'
1018 INK#2,6:FOR i=0 TO 1:CURSOR#2,6+i,9:PRINT#2,'QBITS MINE Detector'

1019 CSIZE#2,2,0:OVER#2,0

1020 INK#2,3:LINE#2,42,2 TO 42,86 TO 170,86 TO 170,2 TO 42,2:RESTORE

1021 FOR i=1 TO 10:READ col,x,y,str$:INK#2,col:CURSOR#2,x,y:PRINT#2,str$

1022 DATA 6,33,166,' ',6,33,198,' ',6,9,182,' ',6,80,182,'¼'

1023 DATA 5,360,18,'(N)ew (E)xit',3,72,166,'Set',3,66,200,'Flag'
1024 DATA 5,12,108,'Mines:',5,12,128,'Flags:',5,12,148,'Sec:'

1025 BLOCK#2,20,4,30,186,6:BLOCK#2, 2,6,92,182,6

1026 INK#2,5:LINE#2,8,10 TO 8,19 TO 18,19 TO 18,10 TO 8,10 :INK#2,3
1027 CIRCLE#2,30,14.5,5:MF_Detector 2,8,82:MF_PPE 2,5,13,82:INK#2,5

1028 END DEFine

1030 DEFine PROCedure MF_Game

1031 DIM mes$(4,40):MF_Seed:chk=0

1032 REPeat main
1033 IF chk=1

1034 CURSOR#2,78,148:PRINT#2,FILL$(' ',3-LEN(gsec))&gsec

1035 gsec=GTime-(DATE-OldTime):IF gsec=0:End_Game
1036 END IF

1037 x1=x:y1=y:OVER#1,-1:BLOCK#1,8,4,(a+(x1-1)*w),(b+(y1-1)*h),6

1038 k=CODE(INKEY$(20)) :BLOCK#1,8,4,(a+(x1-1)*w),(b+(y1-1)*h),6:OVER#1,0
1039 SELect ON k

1040 =192:x=x -1:BEEP 400:IF x< 1:x=1

1041 =200:x=x+1:BEEP 400:IF x>16:x=16
1042 =208:y=y -1:BEEP 400:IF y< 1:y=1

1043 =216:y=y+1:BEEP 400:IF y>12:y=12

1044 = 81,113:LRUN dn$:STOP :REMark (Q)uit

1045 = 77,109:MF_Locate:mines=255:End_Game :REMark Show Mines

1046 = 78,110:chk=1:CLS#0:MF_Seed:OldTime=DATE :REMark (N)ew Game

1047 = 10:IF chk=1:MF_Mark:IF mines=0:End_Game :REMark Mark mines
1048 = 32:IF chk=1:IF Board(x,y)=255:MF_Explode:ELSE :MF_Show

1049 = 27:MODE 4:CSIZE#2,0,0:INK#2,7:CSIZE#0,0,0:INK#0,7:PRINT#0,’Bye…’:STOP
1050 END SELect

1051 END REPeat main

1052 END DEFine

Page 7

1054 DEFine PROCedure MF_Show
1055 IF y-1>=1 AND x-1>=1 :x1=x-1:y1=y-1 :MF_Status:END IF
1056 IF y-1>=1 :x1=x :y1=y-1 :MF_Status:END IF
1057 IF y-1>=1 AND x+1<=16 :x1=x+1:y1=y-1 :MF_Status:END IF
1058 IF x-1>0 :x1=x-1:y1=y :MF_Status:END IF
1059 x1=x:y1=y :MF_Status
1060 IF x+1<=16 :x1=x+1:y1=y :MF_Status:END IF
1061 IF y+1<=12 AND x-1>=1 :x1=x-1:y1=y+1 :MF_Status:END IF
1062 IF y+1<=12 :x1=x :y1=y+1 :MF_Status:END IF
1063 IF y+1<=12 AND x+1<=16:x1=x+1:y1=y+1 :MF_Status:END IF
1064 END DEFine

1066 DEFine PROCedure MF_Status
1067 IF Board(x1,y1)>0 AND Board(x1,y1)<200
1068 BLOCK#1,w-2,h-1,4+(x1-1)*w,4+(y1-1)*h,5
1069 CURSOR#1,7+w DIV 21+(x1-1)*w,-1+h DIV 2+(y1-1)*h
1070 STRIP#1,5:INK#1,0:PRINT#1,Board(x1,y1)
1071 END IF
1072 END DEFine

1074 DEFine PROCedure MF_Mark
1075 IF Board(x,y)=255
1076 Board(x,y)=200:mines=mines-1:flags=flags-1:x1=10+(x-1)*w:y1=6+(y-1)*h
1077 BLOCK#1,w-2,h-1,x1-6,y1-2,5:BLOCK#1,7,4,x1,y1,2:BLOCK#1,2,9,x1,y1,0
1078 END IF
1079 CURSOR#2,90,108:PRINT#2,FILL$(' ',2-LEN(mines))&mines
1080 CURSOR#2,90,128:PRINT#2,FILL$(' ',2-LEN(flags))&flags
1081 END DEFine

1083 DEFine PROCedure MF_Explode
1084 BLOCK#1,w-2,h-1,4+(x-1)*w,4+(y-1)*h,2
1085 BEEP 0,100,50,1,100,6,15,15:hscale=(16/12)*116
1086 INK#1,3:FOR i=1 TO 12:CIRCLE#1,x*11.2-4,(12-y+1)*9.8-4,1.5*i
1087 PAUSE 80:BEEP:End_Game
1088 END DEFine

1090 DEFine PROCedure End_Game
1091 CLS#0:gsec=GTime-gsec
1092 mes$(1)=' You left '&mines&' Mines to Find '
1093 mes$(2)=' after '&gsec&' Seconds of Play '
1094 mes$(3)=' Leaving '&flags&' marker Flags '
1095 mes$(4)=' Game Over - Press any Key... '
1096 IF mines=0:mes$(1)='Well done all Mines Cleared... '
1097 IF mines<255
1098 FOR m=1 TO 4
1099 IF m>1:Pause 60:cls#0
1100 FOR i=1 TO LEN(mes$(m)):CURSOR#0,490,5:PRINT#0;mes$(m,i):PAUSE 5:PAN#0,-12
1101 END FOR m
1102 END IF
1103 k$=INKEY$(-1):CLS#0:MF_Seed:OldTime=DATE
1104 END DEFine

Page 8

1106 DEFine PROCedure MF_Seed
1107 DIM Board(17,13):w=22:h=14:mct=0:mines=0:flags=0:CLS#1
1108 FOR m=1 TO 72:x=RND(1 TO 16):y=RND(1 TO 12):Board(x,y)=255 Random Mine Distribution
1109 FOR y=1 TO 12 Gather Info to Identify Mine Locations
1110 FOR x=1 TO 16 and Number of distributed Mines
1111 IF Board(x-1,y-1) =255:mct=mct+1
1112 IF Board(x, y-1) =255:mct=mct+1
1113 IF Board(x+1,y-1) =255:mct=mct+1
1114 IF Board(x-1,y) =255:mct=mct+1
1115 IF Board(x+1,y) =255:mct=mct+1
1116 IF Board(x-1,y+1) =255:mct=mct+1
1117 IF Board(x,y+1) =255:mct=mct+1
1118 IF Board(x+1,y+1) =255:mct=mct+1
1119 IF mct>4:mct=4
1120 IF Board(x,y)=255:mines=mines+1:flags=flags+1:ELSE Board(x,y)=mct
1121 BLOCK#1,w-2,h-1,4+(x-1)*w,4+(y-1)*h,4:mct=0
1122 END FOR x
1123 END FOR y
1124 y=RND(4 TO 8):x=RND(2 TO 4):a=-1+w DIV 2:b=2+h DIV 2:MF_Mark:k=0
1125 END DEFine

1127 DEFine PROCedure MF_Locate End Game Show Mine distribution
1128 FOR y=1 TO 12
1129 FOR x=1 TO 16:x1=x:y1=y:IF Board(x,y)=255 OR Board(x,y)=200:MF_Mark
1130 END FOR y
1131 END DEFine

1133 DEFine PROCedure MF_Detector(ch,x,y)
1134 RESTORE 1127:FOR i=1 TO 6:READ col,tx,ty:MF_Tile 2,col,7,5,tx,ty
1135 DATA 5,x,y-16,4,x+9,y-16,4,x+18,y-16,5,x+3,y-23,5,x+12,y-23,4,x+21,y-23
1136 END DEFine

1138 DEFine PROCedure MF_Tile(ch,col,tw,td,tx,ty)
1139 INK#ch,col:x1=tx:x2=tx+tw:x3=tx+tw+tw/4:x4=tx+tw/4:y1=ty:y2=ty-td
1140 FILL#ch,1:LINE#ch,x1,y1 TO x2,y1 TO x3,y2 TO x4,y2 TO x1,y1:FILL#ch,0
1141 END DEFine

1143 DEFine PROCedure MF_PPE(ch,col,x,y)
1144 INK#ch,col:FILL#ch,1:ARC#ch,x+2,y TO x-2,y,PI/2
1145 LINE#ch TO x-2,y-3 TO x-4,y-4 TO x-4,y-8 TO x-3,y-16
1146 LINE#ch TO x+3,y-16 TO x+4,y-8 TO x+4,y-4 TO x+2,y-3 TO x+2,y
1147 FILL#ch,0:INK#ch,7:FILL#ch,1
1148 LINE#ch,x+1.5,y-1 TO x+1.5,y-2 TO x-1,y-2 TO x-1,y-1 TO x+1.5,y-1
1149 FILL#ch,0:INK#ch,0
1150 LINE#ch,x,y-16 TO x,y-11:LINE#ch,x-4,y-10 TO x-1,y-11
1151 LINE#ch,x-3,y-6 TO x-3,y-8 TO x,y-10:LINE#ch,x+4,y-9 TO x+1,y-12
1152 LINE#ch,x+.5,y-10 TO x+3,y-7:ARC#ch,x-2,y-4 TO x+3,y-4,PI/2
1153 INK#ch,1:FILL#ch,1:CIRCLE#ch,x-1.5,y-17,1.6,.6,PI/2:FILL#ch,0
1154 INK#ch,1:FILL#ch,1:CIRCLE#ch,x+2.5,y-17,1.6,.6,PI/3:FILL#ch,0
1155 INK#ch,3:FILL#ch,1:CIRCLE#ch,x+7,y-22,3,.5,PI/2:FILL#ch,0
1156 INK#ch,0:FILL#ch,0:CIRCLE#ch,x+7,y-22,1.5,.4,PI/2:FILL#ch,0
1157 INK#ch,3:FILL#ch,1:LINE#ch,x+.4,y-10 TO x+7,y-22 TO x+7.4,y-22 TO x+.4,y-10
1158 FILL#ch,0:INK#ch,2:FILL#ch,1:CIRCLE#ch,x,y-11,1.5,.5,PI/3:FILL#ch,0
1159 BLOCK#ch,12,8,72,80,2:BLOCK#ch,2,16,72,80,0
1160 END DEFine

