
A FORTH programmer will code FORTH in any language

Even SuperBasic.

FORTH is not a RPN calculator. It's a way to dialog with a computer through sentences composed
of words he understands, and eventually teach him new words. If your FORTH understands the
words STEPS , RIGHT and LEFT, you can tell him :

5 STEPS RIGHT 5 STEPS RIGHT 5 STEPS RIGHT 5 STEPS RIGHT

and he might stroll through a square five steps wide (like a disciplined soldier).

But you may also tell him :

: SIDE 5 STEPS RIGHT ;

: SQUARE 4 TIMES(SIDE) ;

SQUARE

thus, having taught him two new words : SIDE and SQUARE . Simply teaching FORTH new
words is coding. You start teaching him with word : and a new name, and end it with word ; .

The only rule is that the words must be separated by spaces. Any word he does not understand, he
will try to see it as a number and pass it to the next word that expects a parameter, like STEPS.

BASIC was designed as a simplified FORTRAN perusing its numeric labels by giving them to all
statements by numbering them. So, you could use (and abuse) the keywords GOTO and GOSUB to
freely jump here and there in sometimes monstruous “spaghetti programs”.

Sinclair SuperBasic introduced PROCedure and FuNtion constructs that you may simply call by
their name like FORTH words. But still kept the line numbering to let you cook spaghetti code.

A FORTH programmer will like to use and peruse PROCedure and FuNtion constructs to add
his new words to all the keywords of SuperBasic. He will consider that coding is not to type in a
huge spaghetti program and tell him to run, but to name a word that will name words, etc. Like in
FORTH, programming is to use SuperBasic to add to its existing potentialities.

As a FORTH programmer, writing a BOOT program for my QL, I wanted it to include two of my
prefered FORTH words : BYE and OK. I thus coded this short generic procedure into my boot file :

32757 DEFine PROCedure BYE
32758 PAPER#3,0:INK#3,4:CSIZE#3,0,0:CLS#3:AT#3,0,7
32759 PRINT#3,' F1',,'F2',,'F3',,'F4',,'F5':RESTORE OK
32760 FOR i = 5 TO 69 STEP 16
32761 READ p,q,p$,Q$:PAPER#3,p:INK#3,q
32762 AT#3,1,i:PRINT#3,p$:AT#3,2,i:PRINT#3,Q$
32763 END FOR i
32764 p = CODE(INKEY$(-1))/4
32765 IF p<58 OR p>62 : GO TO 32764
32766 CLS#0:CLS:CLS#2:GO TO p+OK-53
32767 END DEFine BYE

Each time you name this procedure from within a SuperBasic console window or if this procedure
is part of a statement in a SuperBasic program, it will display at the bottom of the screen a banner
with five function key labels for F1 to F5. This one is the TOP_MENU banner :

As you may note, to do this, BYE needs an initial value for the variable OK(32702) and a MERGE
of this following little file with 5 DATA statements and 5 “target” statements :

32702 DATA 208,7,' PSION ',' SUITE '
32703 DATA 208,7,' PROLOG ',' and FORTH '
32704 DATA 208,7,' C68 ','programming'
32705 DATA 2,7,' QJUMP ',' Q R A M '
32706 DATA 80,7,' SUPER ',' BASIC '
32707 OK=32712 : PAPER#2,0:INK#2,4:CLS#2 : bye
32708 OK=32722 : PAPER#2,0:INK#2,4:CLS#2 : bye
32709 OK=32732 : PAPER#2,0:INK#2,4:CLS#2 : C68 : bye
32710 EXEC DEV$ & 'QRAM' : bye
32711 CLS:CLS#0:PRINT#0,'Say BYE to quit SUPER BASIC':STOP

The 5 DATA statements tell you that any PAPER and INK colors can be adopted for displaying the
function key labels. I chose to paint “purple” access to submenus, “red” executable targets and
“lined red” for going back to father menus. TOP_MENU's father is the SuperBasic console, in which
you can pass any commands, including BYE to go back to the function keys management. The
target statement of this option (F5) ends with STOP. All the other target statements finish recalling
BYE.

The statements 32707 to 32709 are targets for three submenus ; they simply update OK before
calling BYE. Here are the banner and menu file for the PSION suite :

32712 DATA 80,7,' M A I N ',' M E N U '
32713 DATA 2,7,' PSION ',' QUILL '
32714 DATA 2,7,' PSION ',' ABACUS '
32715 DATA 2,7,' PSION ',' ARCHIVE '
32716 DATA 2,7,' PSION ',' EASEL '
32717 OK=32702 : bye : REM back to main menu
32718 EXEC DEV$ & 'quill' : bye
32719 EXEC DEV$ & 'abacus' : bye
32720 EXEC DEV$ & 'archive' : bye
32721 EXEC DEV$ & 'easel' : bye

From lines 32718 to 32721 the targets will EXEC the four PSION programs before recalling BYE.
Line 32717 will simply update the OK variable to let BYE return to the main menu.

Here are the banner and menu file for starting either a PROLOG or one of two FORTH languages.
F1 will let use the simple text editor Qed, to create and update source files for these programs :

32722 DATA 2,7,' QED ',' Text EDIT '
32723 DATA 80,7,' M A I N ',' M E N U '
32724 DATA 2,7,' Edimburgh ',' PROLOG '
32725 DATA 2,7,'ComputerOne',' FORTH '
32726 DATA 2,7,'DigitalPrec','Super FORTH'
32727 EXEC DEV$ &'qed':bye
32728 OK=32702 : bye : REM back to main menu
32729 EXEC DEV$ &'prolog':bye
32730 EXEC DEV$ &'forth':bye
32731 EXEC DEV$ &'forth83_job':bye

The menu file for C68 is special in that it will link to a more complex form editor for F4 and F5 :

32732 DATA 2,7,' C68 QED ',' Text EDIT '
32733 DATA 2,7,' C68 ',' MAKE '
32734 DATA 80,7,' M A I N ',' M E N U '
32735 DATA 2,7,' C68 ',' COMPILE '
32736 DATA 2,7,' C68 ',' LINK '
32737 EXEC QED:C68:bye
32738 EXEC_W MAKE,#2,#2,#2;p$ & " -t " & Q$:C68:bye
32739 OK=32702 : CLS#2 : bye : REM back to main menu
32740 CLS#0:PRINT#0,"Compiling...";:PRINT#0,CCC$(0):C68:bye
32741 CLS#0:PRINT#0,"Linking...";:PRINT#0,CCC$(1):C68:bye

I deported this longer chunk of code at the end of this paper, because it is obsolete, and was just cut
out of a previous “spaghetti” boot, so you can play with it but surely not use it (you would need the
version 2.00 of the C68 tools on which it was based – compacted on a 720k floppy).

What I want to show you now is the evolution of the ways the BYE procedure, the menu files and
others may be put together when the QL is booting. Basically, all has to be merged. This is done the
simplest way with some SuperBasic code in a “MANIFEST” file which is called by a single MRUN
command statement at the end of the BOOT file, following the BYE procedure. Here was my first
and most basic version of this MANIFEST file.

 1 LRESPR 'mdv1_ptr_gen'
 2 LRESPR 'mdv1_MacMouse11'
 3 LRESPR 'mdv1_wman'
 4 LRESPR 'mdv1_Qptr'

 5 window#0,512,256,0,0:paper#0,0;:ink#0,0;: cls#0
 6 CLS#0:WINDOW#0,388,42,110,0:PAPER#0,2;:INK#0,7:BORDER#0,1,7
 7 WINDOW#1,94,225,14,0:PAPER#1,0;:INK#1,7:BORDER#1,1,7
 8 WINDOW#2,388,182,110,43:PAPER#2,0;:INK#2,4:BORDER#2,1,7
 9 OPEN#3,'scr_512x31a0x225':PAPER#3,0;:INK#3,4

10 MERGE mdv1_TOP_MENU
11 MERGE mdv1_PSION_MENU
12 MERGE mdv1_LANG_MENU
13 MERGE mdv1_C68_MENU
14 MERGE mdv1_CFORMS

15 OK = 32702 : KO = 15 : INITFORM

Before going on, let’s look at the way the SuperBasic engine treats different kinds of statements :
1/ Statements without line numbers are called “commands” : these will be interpreted/executed
immediately by the SuperBasic parser (also when they are “compound” statements with colon
character separations).
2/ Statements with line numbers but outside any procedure or function blocks : these will be
interpreted/executed after SuperBasic has finished loading (or merging) the files that contains them,
following the numbering order.
3/ Numbered statements within procedures or functions : these will only be interpreted/executed
when the procedures or functions are called (simply by their name – eventually with parameters).
The functions and procedures can be named/called in (un-numbered) command statements or else in
any numbered statement of type 2 or 3. Almost like (indeed) FORTH builds progressively on itself.
4/ The DATA keyword controls a special type of statements that must be numbered (outside
procedures or functions) but that are not executable in a proper sense.

Here we have a first issue : in our menu files they are mixed with “target” statements that are also
outside procedures and functions, but that are executable because they are numbered. In the BYE
procedure these “target” statements are selected by a “computed” GOTO at line number 32766, but
to execute only one of them, they must end calling BYE again. That’ OK.

A second issue arises : after MERGEing all the modules of my boot process, SuperBasic will look
for the first executable statement outside any procedure or function. He will find this one :

32701 MRUN mdv1_TOOB

The little SuperBasic file “TOOB” has to conclude all the MERGE of the boot process...

By deleting the MANIFEST statements : so in its simplest form, it has only one command statement
(ending with BYE !) :

DLINE 1 to KO : BYE

This could be all. BUT…

Last year, a thread on the Sinclair QL forum, inspired me a challenge : find the simplest way to
code SuperBasic without line numbers : I wrote this 15 lines SuperBasic function :

 1 DEFine FuNction add_line_numbers(f$,first,interval)
 2 input_file$ = dev$ & f$ & "_txt"
 3 output_file$ = dev$ & f$ & "_bas"
 4 OPEN_IN#5,input_file$
 5 OPEN_OVER#6,output_file$
 6 l = first : i = interval
 7 REPeat number
 8 INPUT#5,l$: k = LEN(l$) : IF k > 1 THEN
 9 IF CODE(l$(k))=13 THEN k = k-1
 10 IF k > 0 THEN PRINT#6,IDEC$(l,5,0);" ";l$(1 TO k)
 11 ELSE i = 0 : END IF
 12 IF EOF(#5) THEN EXIT number : ELSE l = l+i : i = interval
 13 END REPeat number
 14 CLOSE#6 : CLOSE#5 : RETurn l
 15 END DEFine add_line_numbers

This function will take a file of un-numbered SuperBasic statements on dev$_ with suffix _txt
and output on the same dev$_ a file with suffix _bas were all the lines will be numbered
starting with first and paced by interval. The function will return the line number of the last
statement. It will dismiss the blank lines and the spurious CR (code13) characters when needed.

As long you work on the same _txt file you will only store the latest corresponding _bas file.

This is my new boot file including the ALN (add_line_numbers) function and some commands :

DEV$="FLP1_" : MODE 4 : PROG_USE DEV$: DATA_USE DEV$

32741 MRUN DEV$ & "TOOB"

32742 DEFine FuNction aln(f$,f,d)
32743 input_file$ = DEV$ & f$ & "_txt"
32744 output_file$ = DEV$ & f$ & "_bas"
32745 OPEN_IN#5,input_file$:OPEN_OVER#6,output_file$
32746 l = f : i = d
32747 REPeat number
32748 INPUT#5,l$: k = LEN(l$) : IF k > 1 THEN
32749 IF CODE(l$(k)) = 13 THEN k = k - 1
32750 IF k > 0 THEN PRINT#6,IDEC$(l,5,0);" ";l$(1 TO k)
32751 ELSE i = 0 : ENDIF
32752 IF EOF(#5) THEN EXIT number : ELSE l = l+i : i = d
32753 END REPeat number
32754 CLOSE#6 : CLOSE#5 : RETurn l
32755 END DEFine aln

32757 DEFine PROCedure BYE
32758 PAPER#3,0:INK#3,4:CSIZE#3,0,0:CLS#3:AT#3,0,7
32759 PRINT#3,' F1',,'F2',,'F3',,'F4',,'F5':RESTORE OK
32760 FOR i = 5 TO 69 STEP 16
32761 READ p,q,p$,Q$:PAPER#3,p:INK#3,q
32762 AT#3,1,i:PRINT#3,p$:AT#3,2,i:PRINT#3,Q$
32763 END FOR i
32764 p = CODE(INKEY$(-1))/4
32765 IF p<58 OR p>62 : GO TO 32764
32766 CLS#0:CLS:CLS#2:GO TO p+OK-53
32767 END DEFine BYE

PRINT aln("MANIFEST",1,1)
MRUN DEV$ & "MANIFEST_bas"

The last lines of this BOOT file are commands calling ALN to add line numbers to MANIFEST_txt
an un-numbered text file and then MRUN the resulting MANIFEST_BAS file ; in this file, ALN will
be used too, to add line numbers to all the _txt modules (menus etc.) before merging them :

LRESPR DEV$ & 'ptr_gen'
LRESPR DEV$ & 'MacMouse11'
LRESPR DEV$ & 'wman'
LRESPR DEV$ & 'Qptr'

WINDOW#0,512,256,0,0:PAPER#0,0:INK#0,0:CLS#0
WINDOW#0,388,42,110,0:PAPER#0,2;:INK#0,7:BORDER#0,1,7
WINDOW#1,94,225,14,0:PAPER#1,0;:INK#1,7:BORDER#1,1,7
WINDOW#2,388,182,110,43:PAPER#2,0;:INK#2,4:BORDER#2,1,7
OPEN#3,'scr_512x31a0x225':PAPER#3,0;:INK#3,4

CFO = 32601
R = ALN("CFORMS",CFO,1)
TMO = R+1
R = ALN("TOP_MENU",TMO,1)
PMO = R+1
R = aln("PSION_MENU",PMO,1)
LMO = R+1
R = ALN("LANG_MENU",LMO,1)
CMO = R+1
R = ALN("C68_MENU",CMO,1)

MERGE DEV$ & "C68_MENU_bas"
MERGE DEV$ & "LANG_MENU_bas"
MERGE DEV$ & "PSION_MENU_bas"
MERGE DEV$ & "TOP_MENU_bas"
MERGE DEV$ & "CFORMS_bas"

Note that because of the DATA statements, MANIFEST has to remember the first line numbers of all
the text files ALN will add line numbers to, before chain-merging them ; it does with the variables :

CFO = 32601
TMO = 32702
PMO = 32712
LMO = 32722
CMO = 32732

The TOOB file has to manage these variable line numbers :

KO = CFO-1 : OK = TMO
DLINE 1 TO KO
INITFORM : BYE

but all the files (menus, etc.) should also have their target statements adapted ; in the TOP_MENU
for instance, the statements jumping to sub-menus :

OK = PMO : PAPER#2,0:INK#2,4:CLS#2 : bye
OK = LMO : PAPER#2,0:INK#2,4:CLS#2 : bye
OK = CMO : PAPER#2,0:INK#2,4:CLS#2 : C68 : bye

and in all the sub-menus, to return to the TOP_MENU :

OK = TMO : bye : REM back to main menu

Meaning that each time you boot the QL, the MANIFEST and all the modules it will MERGE as
_txt files may be modified, because ALN will always treat them. However, when no files have
been modified and MANIFEST has run once, all the _bas files are up to date. So, on all the next
boot runs, the ALN sequence of the MANIFEST is no longer needed. This sequence could then
simply be framed out by a SuperBasic IF structure :

CFO = 0
IF CFO > 0 THEN
OPEN_OVER#4,DEV$ & "TOOB"
PRINT#4,"CFO = "; : PRINT#4,CFO
R = ALN("CFORMS",CFO,1)
TMO = R+1
PRINT#4,"TMO = "; : PRINT#4,TMO
R = ALN("TOP_MENU",TMO,1)
PMO = R+1
PRINT#4,"PMO = "; : PRINT#4,PMO
R = aln("PSION_MENU",PMO,1)
LMO = R+1
PRINT#4,"LMO = "; : PRINT#4,LMO
R = ALN("LANG_MENU",LMO,1)
CMO = R+1
PRINT#4,"CMO = "; : print#4,CMO
R = ALN("C68_MENU",CMO,1)
PRINT#4,"KO = CFO - 1 : OK = TMO"
PRINT#4,"DLINE 1 TO KO"
PRINT#4,"INITFORM : BYE"
CLOSE#4
END IF

Needing only the update of one statement of the MANIFEST file : CFO=0 instead of CFO=32601

The only problem when you skip the ALN sequence is that the QL does not know the line number
variables. This is easily solved by updating TOOB - as you can notice - in the ALN sequence itself.

With this simple example of a boot process, I wanted to surline how a plain SuperBasic MANIFEST
file may be used to control modular and conditionnal loading of un-numbered basic programs. The
software modules should only contain procedures and functions and the DATA statements have only
to be the first ones in the modules. Even GOTO statements are allowed if they are “computed”.

As a further example of this technique, my (obsolete) CFORMS module that controls edition of the
C68 compiler and linker options has two “computed” GOTO statements at lines 32642 and 32695.

32601 DATA 18,4,0,2,0,2,2,0,7,7,12
32602 DATA 12,2,"3K"," -=3072",5,18,2
32603 DATA 12,2,"5K"," -=5120",5,18,3
32604 DATA 12,2,"7K"," -=7168",5,18,4
32605 DATA 12,2,"9K"," -=9216",5,18,1
32606 DATA 24,2,"VERBOSE"," -v",7,1,6
32607 DATA 24,2,"LACONIC","",7,1,5
32608 DATA 41,2,"ANSI"," -unproto",9,5,8
32609 DATA 41,2,"K&R ","",9,5,7
32610 DATA 53,2,"16 bits"," -Qshort",13,7,10
32611 DATA 53,2,"32 bits","",13,7,9
32612 DATA 30,7,""," flp1_mydir_",12,14,4
32613 DATA 30,8,""," myprog_c",15,11,1
32614 DATA 30,4,""," -Iflp1_myINCs_",14,9,2
32615 DATA 30,5,""," -Lflp1_myLIBs_",11,13,3
32616 DATA 10,12,"Floating point & Maths flp1_LIB_LIBM_a"," -
lm",16,12,15
32617 DATA 10,13,"Dynamic allocations flp1_LIB_LIBMALLOC_a"," -
lmalloc",17,15,16
32618 DATA 10,14,"debug support flp1_LIB_LIBDEBUG_a"," -
ldebug",18,16,17
32619 DATA 10,15,"Semaphores and tasking flp1_LIB_LIBSEM_a"," -
lsem",1,17,18
32620 DATA 0,1,0,0,1,0,0,1,0,1,1,1,1,1,0,0,0,0,11
32621 DATA 1,1,0,4,"COMPILE AND LINK OPTIONS :"
32622 DATA 4,2,0,4,"Stack : Mode : Norm : Int :"
32623 DATA
0,3,0,7,"--
"
32624 DATA 7,4,0,4,"My Include Directory :"
32625 DATA 7,5,0,4,"My Library Directory :"
32626 DATA
0,6,0,7,"--
"
32627 DATA 7,7,0,4,"My Project Directory :"
32628 DATA 7,8,0,4,"My Current File Name :"
32629 DATA
0,9,0,7,"--
"
32630 DATA 1,10,0,4,"Standard Libraries to scan :"
32631 DATA 10,11,0,7,"Standard C LIBRARY flp1_LIB_LIBC_a"
32632 DEFine PROCedure INITFORM
32633 o=CFO:RESTORE o:READ m:DIM f(m):READ n:DIM r$(n,32)
32634 DIM CC(7):FOR i=0 TO 7:READ CC(i):NEXT i:READ cp
32635 RESTORE o+m+1:FOR i=1 TO m:READ f(i):NEXT i:READ MMM
32636 FOR i=1 TO m:READFLD(o+i):IF m$="":r$(jt)=n$
32637 END DEFine
32638 DEFine PROCedure EDITFORM
32639 o=CFO:CLS#2:RESTORE o+m+2:p$=""
32640 FOR i=1 TO MMM:READ
x,y,jp,jt,m$:PAPER#2,jp:INK#2,jt:AT#2,y,x:PRINT#2,m$
32641 c=cp:READFLD(c+o)
32642 c=NEXTFLD(c):IF c<>cp:GO TO CFO + 41
32643 REPeat ScanKeyb

32644 a=CODE(INKEY$(-1))
32645 SELect ON a
32646 ON a=208:c=PREVFLD(c)
32647 ON a=216:c=NEXTFLD(c)
32648 ON a=32:c=TOGGLE(c)
32649 ON a=10:DISPFLD c,0:EXIT ScanKeyb
32650 ON a=27:C68:bye
32651 END SELect
32652 END REPeat ScanKeyb
32653 FOR i=1 TO m
32654 READFLD(o+i):IF m$="":n$=r$(jt)
32655 IF ((m$<>"") OR ((jt>1) AND (jt<n))) AND (f(i)=1):p$=p$&n$
32656 END FOR i
32657 dat$=r$(n,4 TO LEN(r$(n))): REM p$ = p$ & " -tmp" & dat$
32658 END DEFine
32659 DEFine FuNction CCC$(opt)
32660 EDITFORM:INK#2,4:CLS#2:nnn="_c"INSTR r$(1)
32661 IF nnn=0:nnn=len(r$(1))+1:r$(1)=r$(1)&"_c"
32662 IF opt=0:p$="-c "& dat$ & r$(1,4 TO nnn+1)&" "&p$
32663 IF opt=1:p$="-o"&dat$&r$(1,4 TO nnn-1)&" "&dat$&"*_o "&p$
32664 EXEC_W CC,#2,#2,#2;p$
32665 PRINT#0," Done... Hit any key !";:return inkey$(-1)
32666 END DEFine
32667 DEFine FuNction TOGGLE(i)
32668 IF m$="" THEN
32669 EDITFLD(jt)
32670 ELSE
32671 IF jt=i :f(i)=1-f(i)
32672 IF jt<>i:f(i)=0:i=jt:f(i)=1:READFLD(i+o)
32673 END IF
32674 DISPFLD i,1:RETurn i
32675 END DEFine
32676 DEFine FuNction PREVFLD(i)
32677 DISPFLD i,0:i=jp:i=FINDFLD(i):DISPFLD i,1:RETurn i
32678 END DEFine
32679 DEFine FuNction NEXTFLD(i)
32680 DISPFLD i,0:i=jn:i=FINDFLD(i):DISPFLD i,1:RETurn i
32681 END DEFine
32682 DEFine PROCedure DISPFLD(i,s)
32683 PAPER#2,CC(2*f(i)+s):INK#2,CC(4+2*f(i)+s)
32684 AT#2,y,x:PRINT#2,m$;:IF m$="":PRINT#2,r$(jt,4 TO)
32685 END DEFine
32686 DEFine PROCedure EDITFLD(ii)
32687 PAPER#2,CC(2*f(i)):INK#2,CC(4+2*f(i))
32688 AT#2,y,x:PRINT#2,FILL$(" ",29)
32689 AT#2,y,x:INPUT#2,O$:r$(ii)=r$(ii,1 TO 3)&O$
32690 END DEFine
32691 DEFine PROCedure READFLD(l)
32692 RESTORE l:READ x:READ y:READ m$:READ n$:READ jn:READ jp:READ jt
32693 END DEFine
32694 DEFine FuNction FINDFLD(i)
32695 READFLD(i+o):IF (jt<>i)AND(f(i)=0):i=jt:GO TO CFO + 94
32696 RETurn i
32697 END DEFine
32698 DEFine PROCedure C68
32699 PAPER#2,0:INK#2,4:CLS#2:VIEW#2,dev$ &'C68_help'
32700 END DEFine C68
32701 MRUN mdv1_TOOB

