

—T||ool—||

QLArchive

©1984 PSION LIMITED
by Dick de Grandis-Harrison (Psion Limited)

QLArchive is a database program which enables you to createfiling systems for any
type of information you choose. You are free to decide howthis information will be stored
and retrieved.

You will quickly discover how Archive can be used for creating simple card index systems
such as addresslists or customer records. Once you have mastered the creation of
straightforward systems such as these, you may wish to develop more complex multi-file
relational systems where information is shared between,for example, purchase and stock
control records.

Information may be presented using the screen layout that Archive provides, or you may
design your own. Printed forms and reports can be produced from the information in
the file in any format you choose,

One of the most powerful features of Archiveis its command structure. Once you have
created a file and stored some recordsin it, these commands can be used to find
particular records, make searches and selections or display the information in the file
in a particular order.

The commands combine to form a powerful programming language, similar to
SuperBASIC, which can be used to construct a multitude of specialist applications.

Atall times you will be guided by an informative set of prompt messages which never
leave you in doubt about what your options are or what you are expected to do.If you
require further information you can use the Help files. You may ask for Help at any stage,

no matter what you are doing, and will automatically be given the information thatis
most relevant to your current needs.

The real power of Archive becomes apparent when you write your own proceduresin

the command language. You can create a named procedure to do exactly what you
want and then use it as an additional command, in the same way as you use the
commandsprovided with Archive.

The mechanicsof writing and modifying a program are aidedbya full procedure editor
which, together with the inputline editor (which is available at all times), make editing
a simple and painless task.

The data files themselves use variable length fields and records. Not only doesthis lead

to the mostefficient use of available memory and cartridge space, but also to simplified
file creation. You never need to decide in advance how large a record needsto be.

This manual contains a number of working examples. Try these out to see some of the
rangeof things that can be done. They contain many general purpose procedures which

you might include in your own programs.

If, at any time, you are not sure what to do, rememberthat you can ask for Help by

pressing F1. Also rememberthat you can cancel any partially completed operation (eg.
typing in a number, or using a command) by pressing ESC.

Archive has been designed to give you the greatest possible flexibility. As a consequence
it cannot give as muchassistance with the selection of options as the other QL programs.
If you are not familiar with computers and computer programming you mayfind it helpful
to read the Beginner's Guide to SuperBASIC before attempting to write Archive programs.

12/84

CHAPTER1

ABOUT
QL ARCHIVE

CHAPTER2
GETTING
STARTED

LOADING
QL ARCHIVE

GENERAL
APPEARANCE

Load QL Archive as described in the Introduction to the QL Programs. When loaded
Archive will display the following message:

LOADING QL ARCHIVE

version xX.xx

Copyright © 1984 PSION SYSTEMS
database

where x.xx represents the version number, eg. 2.00.

The program will then wait for a few seconds before starting.

The Help information is not loaded into the computer's memory togetherwith the program.
It is only read from the Archive cartridge whenit is needed. You should therefore not
remove the Archive cartridge from Microdrive 1 if you intend to use the Help facility.

When you have loaded Archive the screen should looklike Figure 2.1. This is the main
display.

HELP COMMANDS create Look open close COMMANDS
press F1 delete display back alter tind press F3
PROMPTS first insert last next quit ESCAPE

press F2 type command & press ENTER (F3 for more) press ESC

>

Figure 2.1 The main display with a monitor. (80 characters)

If you are using a domestic television, the screen is arranged slightly differently. This
is because television is not normally able to show clearly 80 characters perline. Archive
therefore only shows 64 characters.

The screen is divided into three sections: the display area, the work area and the control
area.

12/84

As its name suggests, this is where all information produced by Archive is shown.

The work area uses the bottom four lines of the screen. All commands that you type
in, together with any error messages, are shown here.

Figure 2.2 The display area Figure 2.3 The work area

These two areas almost invariably work together, since commandstyped into the work
ared produce their results in the display area.

As an example, type in the following short program, exactly as it is shown below.

tet x=13:while x>O:print x:let x=x-1:endwhile LENTER

The text of this program will appearin thefirst line of the work area. When you press
ENTER, the numbersfrom thirteen down to one will be printed on successivelines of
the display area. The bottom line of the display area will be left blank except for a red
cursor indicating the next position at which text will be displayed. The numbers from
fifteen to one are displayed which, together with the bottom blank line, occupyall sixteen
lines of the display area.

The commana:

cls LENTER

will clear the display area completely.

The control area occupies the top few lines of the screen. It shows the normal options:
Help (F1), to turn the prompts on and off (F2), cancel any incomplete operation (ESC),

and use a command (F4).

Figure 2.4 The control area Figure 2.5 The commands

Archive’s commandsform a programming language and you musttype their names
in full. This may seem long-windedatfirst, but later you will be shown how to create
procedures which allow you to enter commands with a single keystroke.

12/84

Getting Started

The Display and
Work Areas

The Control Area

USING THE
COMMANDS

Getting Started

THE
MODE COMMAND

There are four different lists of commands which can be displayed by pressing F3.If
a commandlist is already being shown, pressing F3 will display the next list in sequence.
These commandsare used simply by typing in the name and pressing ENTER. However,
some commands need further information and will ask forit.

You can use any of the commands,evenif its name does not appear in the current
display in the control area.

You can combine the control, display and work areasinto a single area with the mode
command. Usedbyitself mode will combinethe three areas into a single area. Typing
mode 0 will also have the sameeffect. Try

mode |ENTER

and the input from the keyboard and anything displayed by a command or program
will share the whole of the screen. A value of 1 divides the screen backinto three areas.

You can also use the mode command to change the numberof characters displayed
across the screen. To do this you must supply a second numberseparated by a comma
from the first. The second number must be a 4, 6 or 8 to select a 40, 64 or 80 column
display. Try typing

mode 0,4

to change the display to 40 characters and to combineall three areas on the screen.
Note that the 0, which originally was optional must be typed to change the size of the
display.

Try somedifferent combinations to see the effect on the display. Finish with a command
that leaves the screendividedintoits three areas, but choose the numberof characters
that gives a clear display on your television or monitor

12/84

An Archive file behaves rather like a card index. A real card index consists of a box
containing a set of record cards, each card containing various items of information. For
such a card index to be useful, there have to be rules to determine where each piece

of information is written.

Suppose, for example, that we have a name and address index. You would normally
write the person's name acrossthe top,followed by the address and telephone number
(if any). It would be very difficult to use if some cards had the name written at the top

and others hadit written near the bottom. You would normally expect to be able to use
the index by flipping through the cards, reading only the topline, until you found the
name you were looking for.

If you had two sets of record cards, such as a set of name and address records and
a set of stock records, you would not normally store them both in the same box. You
would use two boxes and label them, for example, “Customer Records” and “Stock

Records’

The card index system contains most of the ideas necessary to understand how an
Archivefile works. A file is like the card index box and is given a nameto identify it.
Thefile is made up of a collection of records, each of which serves the same purpose
as a record card. A file, then, is simply a collection of related records.

Like a card index, the information in each record is organised in a regular way. Individual
items of data, such as telephone numbers might be kept on a specified area of the
card. A record in an Archive file is organised in the same way. Each item is stored in
a separate region of the record, knownas field. A record in a customerfile, such as
that described above, would contain a namefield, an addressfield, a discount field and

so on.

If this were the whole story there would belittle point in using an Archive datafile in
preference to a physical card index. There are, however, many advantages when you
use computerised records. A customer record card index would normally be arranged

in alphabetical order of customer names which makesit an efficient way to find the

information about a particular customer. Suppose, however, you want to senda letter

to all your customers whohavenotplaced an order with you during thelast six months.

It would be a very tedioustask to go through the entire contents of a card index to compile

sucha list. In Archive you can make such a search by using a few simple commands.

Furthermore,it is easy to arrangefor a set of addresslabels to be printed at the same time.

You can save a great deal of time andeffort by using Archive to store and manipulate

your records.

12/84

CHAPTER 3
QL ARCHIVE
FILES
FILES RECORDS
AND FIELDS

CHAPTER 4
EXAMINING

A FILE

DISPLAYING
A RECORD

EXAMINING
OTHER RECORDS

SEARCHING A
FILE
Find

The best way to start learning about Archive is to look through the demonstration file
gazet, provided on the Archive cartridge. This is a file which contains information about
various countries — the continent, the capital, the currency, the language, the population,
the land area and the gross domestic product per capita.

Most of the examples in chapters 4 and 5 refer to the ‘gazet” file. Before using it, you
should make a copy ofit using the following procedure:

When you have loaded Archive, put a formatted cartridge into Microdrive 2 and type:

backup

mdv1_gazet_dbf

mdv2_gazet_dbf

Wait until the two Microdrives have stopped; be patientas thefile is quite long and can
take a while to copy. Use the copy, now on the cartridge in Microdrive 2, for

experimenting.

From now on wewill not always write ENTERat the end of every command but please

rememberthat it muststill be used.

The look command opensa file so that you may read its contents, but you are not able
to make alterations or additions to thefile. It is a safer command than openif you are
merely looking througha file because thefile is protected against accidental modification.

You can examine the copy of the “gazet” file on Microdrive 2 by typing:

Look ''gazet"'

To look at the first record type:

first

display

Dont forget to tyoe ENTERafter each command and then the display will show the
first record ofthefile.

Note thefirst line shows the logical nameof thefile; Archive automatically supplies the
name “main” for a single file. Logical file names are usually used when you are using
more than onefile at a time and are described later

Having looked atthefirst record of the file, you may want to move on to the following
record. Type:

next

and the display shows the nextrecord in the file. When you are typing single commands
after a display commandthe display area is continuously updated to show the contents

of the current record. You can use the next commandto step throughthefile, record
by record until you reach the end(it will not pass the last record),

There are three other related commands which you can use to control which record
of the file is displayed.

back — which displays the previous record,
first — which displays thefirst record,
last — which shows the last record ofthefile.

Try using these commands to move around thefile, displaying any record youlike. Note
that the four commandsfirst, last, next and back do not themselves display the record.
They merely move from record to record regardless of whether or not you have used
display command.

The first and simplest search commandis find. This will search from the beginning of
a file, looking for the first occurrence of a specified piece of text in any of the text fields.

12/84

For example:

find "africa"

When you press ENTERtherewill be a slight pause and thenthefirst record containing
the word africa’ in any of its text fields will be displayed. Note that this search is
independent of whetherthe text is in upper or lower case and will therefore find Africa’
AFRICA’ or africa’

lf the first record that is found containing the text is not the one that you want, you can
find the next occurrence by typing:

continue

The continue commandwill repeat the previous search, looking for the next occurrence
of the text in any text field of the following records.

It is possible that you may have to repeat a search several times before finding the record
you require. Press F5 and Archivewill put the previous command backin the command
line. Press ENTER and the command will be executed.

Another method oflocating a particular recordis to use the search command.This allows
you to find a record by specifying the contents of one or more specific fields, for example:

search continent$="EUROPE" and lLanguage$="'"FRENCH"

will find thefirst record in the file which matches both conditions. You must type in the
full field name.

Unlike the find command, searchwill only test the fields you specify and will differentiate

between upper and lower caseletters. Use the upper()or lower() case functions to make
the search case independent, for example:

search lower(continent$)="europe"

Again the continue command can be used to find the next occurrence of the text.

In many cases, you may wantto look at a sub groupof the recordswithin file. Suppose,
for example, you only want to look at the details of countries in Europe. You can use

the select command to pick out from the file all those records which satisfy a certain
condition. The file will then behave as though only those selected records are present.
Try this command on the ‘gazet” file to see how it works. First type:

print count ()

which will tell you how many records there are in the file. Then type:

select continent$=""EUROPE"

print count ()

and you will see how many records have been selected. The records that are removed
from thefile are still held in the computer's memory and you can restore them to the
file at any time by using the reset command. Type:

reset

and print the value of count() again, to check that thefile has been restoredto its original
state.

When you use the print command from the keyboard, any file shown on the screen
will be erased. This is because, in general, display and print use areas of the screen
which overlap. After using print you must type display again to restore the display.

The file records may not always be in the order you need. You can sort the file by the
contents of numeric or text fields. Only the first eight characters of text are taken into
account by order.

Suppose, for example, you want to sort the recordsof the ‘gazet” alphabetically by capital
city. You can do this by using the order command asfollows:

order capital$;a

The ‘a” following the semicolon specifies that you want to sort thefile in ascending order.
Replaceit by ‘d”if you wantthe file sorted in descending order. The capital$ field becomes
the sort key for the file. You can specify a sort key composedof up to four fields by

12/84

Examining a File

Continue

Search

Select

SORTING A FILE

Examining a File

LOCATE

CLOSING A FILE

giving list of fields after the order command. For each of the keys you must specify

whetherthe sort is to be in ascending or descending order. The following command,
for example, will sort thefile into descending order by population and ascending order
by capital.

order pop;d,capital;a

“a
Note that a semicolon separates each field name from the ‘a’ or ‘d” that specifies
ascending or descending order, but that each pair (field name andletter) is separated
from the next by a comma.

When morethanonefield is specified for sorting purposesthe recordsareinitially sorted
according to the contents of thefirst field in the list. If two or more records have the
same contentsfor this field, they are ordered according to the next field in the list. If
recordsexist which are equalin respect of the contents of both of these twofields, they
are ordered according to the contents of the third field, and so on.

Whena file has been sorted, you can use the locate command to make any particular
record the current record in thefile. Its action is to find the first record whosefirst sort
field is greater than or equal to the given expression. This record becomesthe current
record in thefile.

For example, if the ‘gazet” file has been sorted as described in the last example, the
command:

locate '100"

locates the first country in the sorted file which has a population of 100 million. If there
is no such country Archive will locate the first country with a population less than 100
million (rememberthat the file was sorted in descending order).

Locate is followed by an expression which may beeither text or numeric, but must be
of the same type as the field used to sort the file. (See the Reference chapter)

You can locate a record with respectto the contents of more than onesort field by using
locate with multiple expressions, separated by commas. For example,

let a="'100"

let b$="'"p"

locate a,b$

will find the first country with a population of 100 million or less, and with a capital whose
nameeither starts with “D”or is after “D” in the alphabet. In this example Archive will
locate Bangladesh, which has a population of 76.1 million and whose capital is Dacca.

The only restriction on the numberof expressions that you can use with locateis the
numberof fields used to sort the file.

You cannot use continue after locate. Repeating a locate with the same condition will
always locate the same record.

Locateis the fastest way of locating a record in a large, sorted, file. Because of the
uncertainty in the record that is located, you may have to make a further check on the
record to make sure it is what you want.

When you havefinished looking at a file you musttell Archive. You can dothis by typing

close

This will only act on files and will leave any program or screen layout intact. You can
close all your files and clear out your data and display area by typing

new

This will clear Archive to its initial state after loading.

This only acts on the data files, leaving any program, or screen layout, intact.

Alternatively, if you have finished using Archive, you can go back to SuperBASIC by
using quit. This commandcloses all open files automatically before leaving Archive.

Rememberthat you should never removea cartridge from a Microdrive while it contains
openfiles.

12/84

Before typing in examplesin this chapter, type newfirst to ensure that Archive is cleared
and ready for a fresh start.

The open command preparesa file for both reading and writing.

If you opena file with the open command,instead of look you will be able to write to
the file to changeits contents as well as read it. This means that any additions, deletions
or modifications will make a permanent changeto the copyofthefile whenit is closed.
Type:

open ''gazet"

lf you have openeda file for reading with look then you must not use any commands
whichwill attempt to modify the data. If you do, Archive will report an error. The commands
described in this chapter modify data files and so should only be used with a file opened

with open.

Display the first record of the file with:

first

display

When you have finished modifications to the file you must close the file (using close
or new) to ensure that all the changes are recorded.

lf you do not closea file properly (for example, if you just turn off the computer when
you havefinished) the file may be changed and your most recent changeswill not be
recorded. Always make sure that there are no openfiles on a cartridge before you
remove it from the Microdrive. Do not switch off the computer withoutfirst closing

all open files and removing the cartridges from the Microdrives.

The insert command is used to add one or more recordsto the currentfile. When you

use insert youwill be asked to type in the contents of eachfield of the new record. Type:

insert

The display area will now show:

Logical name : main

country$

continent$

capitals

currency$
lLanguages$

pop
area

gdp

You can nowtypein the contents of eachfield. You can step from onefield to the next

by pressing ENTER or TABULATEor you can step back to the previousfield by holding

down SHIFT and pressing TABULATE. You can make as many changesas youlike

to the fields until you are satisfied. The new record can beinsertedinto thefile by pressing

F5. Press F4 to leave insert. Try typing:

SCOTLAND
EUROPE
EDINBURGH
POUND STERLING

ENGLISH
10
30
50

 12/84

CHAPTER 5

MODIFYING
A FILE

CLOSING THE FILE

INSERT

Modifying a File

DELETE

CHANGING
A RECORD

Alter

Update

The display area should now show:

Logical name : main

country$: SCOTLAND
continent$S : EUROPE
capital$: EDINBURGH

currency$: POUND STERLING

lLanguages$: ENGLISH
pop : 10
area : 30

gdp : 50

Whenyouare satisfied that you have typed in the new information correctly, press F5
to insert the new recordinto thefile. The fields you have just typed in will then be blanked
out ready for you to insert a new record. Press F4 when you havefinishedinserting.

You can also end the entry for each field and moveto the next one by pressing ENTER.
The new record is addedto the file automatically when you press ENTERafterthe last
value.

If the file has been sorted the new recordis inserted at the correct position to maintain
the order.

You can use the delete commandto remove a record from thefile. delete removes the
current record (the one shown bydisplay) from thefile. All you have to do to remove
a particular recordis to displayit, and, having made certain thatit is the correct one, type:

delete

It is also simple to modify the contents of any orall of the fields within an existing record.
There are two methods.

Select the record you want to change (use display andfind) then type alter. Alter works
in the same wayasinsert except each field shows its old contents. You can step over
those fields you do not want to change (use TABULATEor ENTER). Type in a new
value or use the cursor keys to modify an old one. Press F5 to replace the record.

As with insert, the record is replaced automatically if you press ENTERafter the last
field in the record.

Select the record you want to change then change the contents of the field variables
until the displayed record is as required. Type update to change the record.

For example, suppose that you decidethat Iceland should bein Europeinstead of the
Arctic. Find the record by typing

find "Iceland"

display

Use the let command to change the contents of the continent$ field:

let continent$ = "Europe"!

Finally put this change into the record by typing update.

In both of the above methods the new record will be inserted in the correct position
if the file has been sorted. Otherwise the replacement recordis inserted in an unspecified
position in the file.

The alter commandis simplerto use, but always affects the current record, The update
command can be useful when you are using multiple files.

Rememberthat you mustclosethefile with the close, the new or the quit command,
before switching off the computer.

12/84

If you have been following the examples upto this point, you will have been using Archive
only to look at the file provided for you. This chapterwill show you how to create your

own file with your own choice of file names.

If necessary, type new to clear anything in the computer's memory and to close any
open files. Make sure that the formatted cartridge on which you are going to create

the file is in Microdrive 2.

Suppose you want to use ARCHIVE to make a catalogue of your books. To dothis,
you will have to create a newfile called “books” Thefirst thing to do when creating a
file is to decide whatit is going to contain,that is, what fields you will use in each record.
In this case you will obviously need to record the author, title and subject; you may also
like to include other details, such as the type(fiction or nonfiction), ISBN (International
Standard Book Number), shelf location, a brief description and so on.In this example
we shall simply use three text fields to contain the author, title and subject and one numeric

field which will be used to hold the ISBN.

You create a file with the create command. You must specify the name of thefile to

be created .and the namesofthe fields to be used in each record. The $ sign indicates
that the field contains text. When you have finished defining the fields of a record you
end the create command with endcreate. You can create a simple book cataloguefile,

as described above, by typing in the following sequence.

create "books"

author$

titles

subject$

isbn

endcreate

Note that you do not haveto typein the final endcreate command. You can do so if
you want, but you can endthe creationofthe file simply by pressing ENTER on a blank
inputline. You must, however, include endcreateif you use create in an Archive program.

When you have created file, it is open for both reading and writing, but it contains

no records. Records can be added using insert. Type:

insert

and the display area will show:

Logical name : main

author$:

titles:

subject$:

isbn:

All you have to dois to type in the contents of each field. For example, type:

Bloggs, J TABULATE
A Boring Manual TABULATE
Cannon Making TABULATE
1234567 TABULATE

the display area should show

Logical name : main

author$: Bloggs, J
titles : A Boring Manual

subject$: Cannon Making

isbn : 1234567

Insert the recordinto the “look”file by pressing F5. Thefield value will be cleared ready

for inserting another record.

12/84

CHAPTER6
CREATING A
FILE

CREATE

ADDING RECORDS

1

Creating a File

Rememberthat you can also endthe entry for eachfield and move to the next one
by pressing ENTERandthat pressing ENTERafter the last value will add the record
to thefile.

Whenyou have finished press F1, and rememberto use close or quit to savethefilefirst.

12
12/84

When you use the display command ona file that you have created, the records are
shown using the standard Archive screen layout.

You can design your own screen layout, better suited to the information in your data SCREEN LAYOUT
file. Open an existing file and typein:

display

You select screen editing with the sedit command — typein:

sedit

The display area shows the current screen layout, which will be the one that Archive
creates automatically. If there is no screen layout in the computer's memory, the display
area may be blank.

You will see that the valuesof the fields of anyfile are not included. The spaces where
these values are normally shown are marked by rows of dots. You should think of a
screen layout as a background against which the values of a numberof variables are
shown in specific positions. Archive shows a screen layout into two stages — first it draws
the background text and thenit shows the valuesof the variables at the marked positions
on the screen.

You are initially at the main level of the command and you have three options:

type background text into the screen
press ESC to leave sedit
press F3 to use a screen editing command

To design a screen layout, press F3 and then C to clear the screen and make a fresh
start. Press ENTERto confirm your choice; any other key will return you to the main
level of sedit.

Choose paperand ink colours by pressing either P or | and pressing any key to switch
between the four available colours. Press ESC to return to the main level to enter
backgroundtext.

Background text might be explanatory, such as:

Andrew Young’s World Gazeteer

Or it might consist of a new name for one of the fields in your file:

Population (millions):

You can movethe cursor to any point in the display area by using the four cursor keys.
Anything that you type will immediately appear in the display area at the position of
the cursor and will become part of the backgroundof the layout. The only exception
is if the Cursor is positioned within an area of the screen reserved for the display of a
variable. Archive shows the name of the variable in the work area at the bottom of the
screen. You cannot type backgroundtext into this area unless youfirst free the area,
as described later.

The four screen edit commands enable you to produceattractive and colourful formats
for displaying your data. Clearing the screen has already been explained. You may need
to experiment to completely master the remaining three so make sure you are using
a copy of your data file which is expendable.

Suppose you want to show the value of the variable country$ at a particular position in the
screen. Move the cursor to that point and press F3 and then the V key. Archive asks
you to type in the nameof the variable. You type:

country$

Note that this name does not appear on the screen — you are just marking the point

where the value is to be shown. When you press ENTER Archive asks you to show

12/84

CHAPTER7
SCREEN
LAYOUTS

DEFINING A

SCREEN EDIT
COMMANDS
Mark Variable (V)

13

Screen Layouts

Ink (I)

Paper (P)

ACTIVATING A
SCREEN LAYOUT

SAVING AND
LOADING SCREENS

14

how much space is to be reserved for showing the value. You press any key except

ENTERto mark the space with a row of dots. CTRL and the left cursor key can be
used to delete reserved space. When you have reserved enough space you press
ENTERand Archive takes you back to the main level of sedit.

If you move the cursorinto one of the reserved areas, (marked by dots), Archive shows
the name of the variable for which space is reserved in the work area.

If you reserve space for a variable in a region which overlaps any area that is already
reserved, you are given the option of cancelling the old area. You can then use the
option again to allocate space for a new variable.

Suppose you want to change the ink colour. Move the cursor to the point where you
want the new colourtext to start and press F3 and then the | key. Archive shows the
four available colours in the control area. The onethat is selected will be the one that
is highlighted. Press any key to change the selected colour and then press ENTER
to record your choice. Any subsequenttext that you type will appear in the new colour
until the ink command is used again.

Changing the paper colour works in the same way — except that you press F3 and
then the P key.

If you want a colour changeto affect only part of a line, you should move the cursor
to the start of the region and select the paper and ink colours that you require. You should

then move the cursor to the end of the region and make a second selection of paper
and ink colours, returning them to their original values.

Once you have designed a screen layout and haveleft sedit, the screen layoutwill be
active. This meansthat the valuesof all the variablesin the screen layout will be displayed
automatically every time Archive completes a command or a program. If, for example,
you type the command next Archive moves to the next record of the current file and
shows thosefields that are included in the screen layout. Any active screen is deactivated
each time you use the cls command.

lf a screen layoutis not active, you can activate it with the screen command.This displays
the background text of the screen layout, but does not show the current values of the
variables.

You can save your screen design on a Microdrive cartridge using the ssave commana:

ssave 'filename'"

where ‘filename’ is a name of your choice. The screen layout is saved exactly as it
appears.

You can reload the screen layout by typing in the command:

sload "filename"

Whenyou load a screen layout, it is automatically displayed on the screen and made
active.

Archive will not automatically update an active screen layout from within a program.
Suppose you want to show all the records of the currentfile, one after another, and tried
to do so by typing the one-line program:

first: let x=0: while x<count():next:let x=x+i:endwhile

(The while and endwhile commands cause the section of program that they enclose
to be performed repeatedly, while the condition following while is true. For correct
operation every while command must have a matching endwhile.)

This program would fail to do what you want, since Archive only updates the contents
of the screen layout at the end of the program.

12/84

You can, however, force a display of the values of the variables in an active screen from
within a program using the sprint command. The following one-line program will show
all the records, as required.

first: let x=O:while x<count():sprint:next:let x=x+1:endwhile

lf there is no active screen sprint has no effect.

Rememberthat the display command usesthe standard layout. It will always replace

any screen layout with its own simplelist of the fields of the current record of the current

file. You must therefore ssave your screen layout before you next use display. If you
do not, your screen layout will be replaced and you will not be able to get it back again
except by redesigning it with sedit.

12/84

Screen Layouts

THE SPRINT
COMMAND

THE DISPLAY
COMMAND

15

CHAPTER8

PROCEDURES To use the examplesin this chapter, first tyoe new to clear the computer, then type look

CREATING A
PROCEDURE

LISTING AND
PRINTING

PROCEDURES

“gazet” to open the example file on your data cartridge, which is assumedto bein
Microdrive 2.

The commandsand functions of Archive together form a programming language which
you can use to write programsthat will manipulate your files. You will find that Archive
programs are simple to write.

An Archive program is made up of one or more separate sections. Each section is
known as a procedure whichis simply a named section of program. You canrefer to
a procedureby its name,like the procedures which you write and use in SuperBASIC.
In Archive you can run a procedure by typing its name at the keyboard. When you
write a procedure you are effectively adding a new commandto Archive.

No procedure may contain more than 255lines, and each line must not contain more
than 160 characters.

You use the program editor whenever you want to write or change a procedure. This
editor allows you to change, delete or add to the text of procedures.

The program editor is described in detail in Chapter 9, but in this chapter wewill look
briefly at someofits features so that we can write a few short procedures. We shall assume
thatinitially there are no procedures in the computer's memory.

Type:

edit

to enter the program editor. The control area changes, showing that you should type
in the nameof the procedure. Entering the editor will always allow you to create a new
procedure if none are defined or loaded.

Thefirst thing to do, therefore, is to decide what the new procedure should do. Let us
start with a very simple task; to makelife easier by renaming the display command.
We will save typing by giving it the name ‘d”

Just type

d

The left hand side of the display area now shows the name, and the right hand side
a listing of the procedure. The procedure, as yet, contains no commands; the proc and
endproc which mark the beginning and endof the procedure were automatically added
by Archive.

The boay of the procedure must be added; that is sequenceof actionsit is to perform.

The control area shows that you can addlines of text to the new procedure. In terms
of the current example this text is the display command. Type:

display

and Archive will insert the new text into the procedure below the highlightedline. If you
have followed this example the display will contain:

d procd

display

endproc

You could add morelines of text — eachline would be inserted below the highlightedline.

In this case, however, the procedure is complete so you can leave the edit command
by pressing ESC twice.

All you have to do to use the procedureis type its name, followed by ENTER.This new
procedure will perform the same function as typing the command display in full.

Wheneveryoucall the edit command you are showna list of the namesof all the defined
procedures present in the computer's memory.

12/84

You can list any one of these procedures from within edit by pressing the TABULATE
key to move downthelist or the SHIFT and TABULATEkeys together to move up the
list until the particular procedure nameis highlighted. The procedure is automatically
listed at the right hand side of the screen.If the procedureis too longtofit in the display
area, you will be shownthefirst part and you can then scroll up and down through

the procedure using the up and downcursor keys. When you have finished you can
leave the edit command by pressing ESC.

lf you want a printed listing of your procedures you can use the llist command. Type:

Llist

and all the procedures currently in the computer's memory will be listed on a printer.

WARNING:Donot use this command unlessa printer is attached since this will cause
the program to “hang”.

lf you want to keep the procedures that you have defined, you can use the save
command. This stores all defined procedures in a single named file on Microdrive
cartridge. If you want to save the new display procedures that you have just defined
in a file called “myprocs’ you should type in

save ''myprocs"

At any later time you can bring these procedures back into the computer's memory
by typing:

load ''myprocs"

The load command deletes any existing procedures in memory before loading the new
ones from the Microdrive cartridge. If you want to add the new procedures to those
already in memory, you can use the merge command. For example:

merge ''myprocs"

This works like load, except that the existing procedures are not deleted. If a new
procedure has the same name as an existing one, the new onewill replace the old
version.

Renaming commonly used commandswith single-character namesis one way of making
life easier for yourself. An alternative would be to write a longer procedure to replace
several commandsby single key presses. Try using the edit command to define the
following procedure.It allows you to open and examine any of your datafiles, providing,
of course, that the file you wish to use is not already loaded.

If you have already defined a procedure, typing:

edit

will not automatically give you the option to create a new procedure. From within edit

you must press F3 and then the N key to start a new procedure.

Don't worry if you make a few mistakes while typing in the example — you will learn

how to correct them in the next chapter.

12/84

Procedures

SAVING AND
LOADING
PROCEDURES

EXAMINING FILE
RECORDS

17

Procedures

18

proc vufile

cls

input "which file? ";file$

look files
display

let key$="z"
while key$<>"q"'

sprint

let key$=lLower(getkey())
if key$="f":ifirst:endif

if key$="L"": Lastz:endif
if key$="n"':next:endif

if key$="b"':back:endi f

endwhile

close
endproc

Rememberthat you leave edit by pressing ESC twice.

You can use the procedure by typing:

vufile

It will first clear the display area and then prompt youto typein a file name such as
‘gazet’If ‘gazet” is already loaded, however, you will receive an error message. To recover,

type new and load and run the procedure again. When you have entered the name
of one of your datafiles the procedure will open thatfile in read-only mode and display
its first record. It will then wait for you to press a key and will respond to the keysf,
|, n, b or q. The first four of these will cause the appropriate display action(first, last,
next or back) and pressing the q (quit) key will close the file and end the procedure.

Sincethis is the first program of any great length that we have written, a few comments
might prove helpful. First note how the example is indentedto clarify the structure of
the procedure. There is no need for you to typeit like this, the indents are added
automatically as you write, list or print the procedure.

The main part of the procedure (waiting for a key to be pressed and performing the
appropriate action) is enclosed between while and endwhile commands.This repetitive
loop will only be left when the condition following while is false, in this case, when you
press the q key.

The if command, used several times within this loop, also requires that each if has a
matching endif to mark the end of the sequenceof instructions to be executed if the
condition is true. If and endif are separate commands and can be used on different
lines. We could, for example, have written thefirst of the if statements in this procedure as:

if key$="f"

first

endif

You mayinclude severallines of statements betweenif and endif; they will all be executed,
provided the condition following if is true. In the vufile procedure these statements are
sufficiently short that each can be written on a single line, using the colon to separate
the individual statements.

As you can see, a sprint command is used within the main loop of this procedure to
make sure that each new record is shown on the screen. Rememberthat, although
the display commands(first, last etc.) always move to the correct record, the data in
the display area is not automatically changed until the end of the procedure.If we had
not includedthe sprint command,no information would have been shownin the display
area until you pressed the q key to leave the procedure. In that case all you would see
would be the result of the last of any sequence of keypresses that you have made.

12/84

This chapter describes the program editor. We shall include a few simple examples, but
the best way to learn is by using them yourself. Start by typing new to clear the computer's
memory.

When you have read this chapter you couldtry writing a few simple programs of your
own, or you could try modifying the procedures you typed in while working onthelast
chapter. If you want to use longer examples you could use the editor to type in all or
part of the programsin the following chapters.

You enter the main level of the program editor with the edit

As an example we can create a procedure and add a couple of statementsto it. From
the main level of edit, press F3 and N to create a new procedure. Type in test when
prompted for the name of the procedure.

Press ESC twice to leave the editor without adding any statements. Then use the edit
command again. If you have no other procedures loaded, the screen will show:

test proc test
endproc

If the procedures you createdin the last chapter arestill loaded, then test is highlighted
on the left as the current procedure among these other procedures. Press F4 to insert
lines of text. The line containing proc will be highlighted.

Now type:

print "this is a test" [ENTER]

print "there are two statements" |ENTER||ENTER|

Pressing ENTERtwice in succession takes you out of insert. When you have finished

the screen will looklike:

test proc test

print "this is a test"

print "there are two statements'!

endproc

The line containing the second print statement is highlighted.

Rememberthat until you press ENTER you can usethe line editor to correct any text
that you type. However, once you have pressed ENTERtheline is inserted into the

procedure. To getit out again to edit it you must press F5. Pressing ENTERwill then
replace the old line with the new line.

You are not allowed to edit the endproc statement at the end of the procedure. You are
also not allowed to edit the word proc but you may edit the rest of the contents of this

line. You can, therefore, rename a procedure by using the line editor to delete the old
name and replace it with a new one. Thelist of procedures at the left of the screen
is rearranged automatically to keep the procedures in alphabetical order.

There are four separate editing commandswhich you will have noticed in the command
section when creating a new procedure. You can select one by pressing F3 and then
typing the first letter of its name.

You type in the nameof the procedure you wantto create. If you type in the name of
an existing procedure, you will not be allowed to create a second procedure butwill
be offered the option of editing the existing procedure.

Whenyou press ENTERatthe end of the name the new procedure becomesthe current
one, listed at the right of the screen. You are presented with an empty procedure —
that is, one containing only the proc and endproc statements.

This command deletes the current procedure from your program. You mustfirst select
the procedure you want to delete by using the SHIFT and TABULATEkeys, as described
earlier, to makeit the current procedure. You then select the command by pressing F3
and then the D key.

You must press ENTERto confirm that you really do want to delete the procedure.If
you change your mind at this stage you can press any other key to go back to edit
without deleting the procedure.

12/84

CHAPTER9
EDITING

THE PROGRAM
EDITOR

Editing Commands

New Procedure (N)

Delete Procedure (D)

19

Editing

20

Cut (C)

Paste (P)

Be careful when you use this commandsince there is no way to restore a deleted
procedure, except by typing it in again.

This command removes one or morelinesoftext from the current procedure. The text
that is removed can beinserted in another position, or even in another procedure, by
means of the paste command.

Before you select the command you should use the up and downcursor keys to make
the currentline either the first or the last line of the section you want to remove. You
can then select the command by pressing F3 and then the C key.

If you then press ENTERthecurrentline will be removed from the procedure. Alternatively
you can use the up or the down cursor key to move the cursor to the other end of a
section of text that you want to remove. The regionof text that will be removed is marked
by highlighting. When you have marked the text you want to remove you should press
ENTER.Archive will immediately remove the marked text.

This commandinserts the text removed by the last use of the cut commandinto the
current procedure, below the current line. The text can be inserted in anotherposition,
or even in another procedure.

Before you select the command you should, if necessary, use the SHIFT and TABULATE
keys to select the procedure in which you wantto insert the text. You should also use
the up and down cursorkeys to highlight the line immediately above the position where
you want to insert the text.

Archive immediately inserts the text, underneath the current line. When you have used
pasteto insert the text, the paste buffer is empty. You can not, therefore, insert the same
text in more than one position.

12/84

CHAPTER10
PROGRAMMING

This chapter will describe the development of an actual working example and each new IN ARCHIVE
technique will be described asit is needed.

Suppose youareinvolved in running a club or society which charges a subscription
and produces a newsletter. You will need to send a copyof each issue to every paid-up
member. You will also need to send a reminder to each member when his or her
subscription falls due.

This exampleallows youto construct a mailing list and then print a set of address labels
on request. The address label includes a reminder when a subscription is due. The
example assumes that you send out six issues of the newsletter per year and that a
persons subscription falls due when he or she hasreceived six issues. It could easily
be adapted to anysituation where you regularly send out some form of circularletter
to a number of people on a mailinglist.

In this example we shall make as much use as possible of the existing facilities and A MAILING LIST
introduce some new ones.If you need help with a feature or command you have not
yet encountered, or one that seems to do things you dont understand, you may now
find it quickerto look for help in the reference section or use the help function by pressing
F1. We use the insert and alter commandsfor all additions and changesto thefile
records. We shall, however, need to write special routines to print out the addresslabels.

We shall have to cater for the following set of requirements:

Add a new record to thefile.
Delete a record.
Modify a record.

Record subscription payments.
Produce the address labels.

Leave the program.

Weshall write a procedure to handle each of these tasks andlink them together by
another procedure which will allow you to select any of these options.

In this application it is quite clear what fields each record must contain. The name and
address are essential plus one field to record the numberof issues the person has
received. We can create the necessaryfile immediately, as shown below.

create "mail"

titles

fname$

surnameS

street$

towns

county$

postcode$

issues

endcreate

We haveusedthreestring fields for the person's name;to hold thetitle (Dr, Mr, Mrs etc.),
the first name and the surname respectively. We could probably have managed with
just a single field.

There are four string fields for the address, nominally reserved for the street address,
the town, county and postcode. You do not always have to use them in this way, but
can treat them as four generalfields to hold the address. Fourfields should normally
be quite sufficient.

There is only one numericfield, to hold the information about how manyissues remain
to be sent.

Nowthat we havethefile, we can useit to test the various procedures as we write them.
It is a good idea to test each procedure as far as possible as you go along. You can
then spot each mistake asit occurs and correctit immediately. If you leave all the testing
to the end it will be much more complicated as several things may be going wrong
at the same time. Keep things as simple as possible while you are still testing your
procedures. Try to make sure that each procedure workscorrectly before you move on
to the next one. That way youwill find that yourfinal program will usually work as soon
as you have written the last procedure.

12/84 21

Programming

22

Insertion

Deletions

Payments

We do not need to write a procedure to add a record. We can use insert. Remember
that you must use sprint to force the display of the contents of the record from within
a procedure. You can use insert immediately to add a few recordsto the file so that
you can test the other procedures on realfile.

At some time you will want to remove the records of people who have not renewed
their subscriptions. We shall write a procedure, wipe, which allows you to scan through
the file, examining the recordsof all people who have not renewed, and to decide which
should be deleted.

We shall use the field variable issues to hold the numberof issues that a personis entitled
to receive. All records for which the value of issues is zero are therefore candidates for
deletion.

proc wipe

rem ****x*x delete non-paying subscribers ***x*

cls

display

select issues =0

all

sprint

print at 10,0; "DELETE (y/n)? '"';

let ok& =lLower(getkey())
print ok$

if ok$ ="y"
delete

print "DELETED": tab 15

else

print tab 15

endif

endall

reset
endproc

Since a deleted record cannot be recovered, the full contents of the record are displayed
and you are asked to confirm that you really wantto delete it. We use the getkey() function
which waits for a key to be pressed and thenreturns the ASCII code of that key. Note
that lower() converts the codeto the lower case character so that you cantype theletter
in either upper or lower case.

Once you aresatisfied you have correctly entered this procedure, you maytry it out
on your file, (provided, of course, that you have entered sometest records). First, leave
edit by pressing ESC(twiceif necessary) and save your procedurein file called “Maillist”

Type:

save 'Maillist"

The procedurecalled wipe is now stored and can be called whenever“Maillist” is loaded.

After entering each of the following procedures, repeat these steps, each time storing
the new procedure in “Maillist’

You will normally want to record a batch of subscription payments from list of names
and addresses. Youwill therefore need to get the record of a particular person. The
quickest way is to write a separate procedure, getrec, to locate a particular record and
then incorporate it in a pay procedure.

The getrec procedure asks for a text string (n$) and then locates thefirst record in the
file which contains that text. If you reply by just pressing ENTER,n$is set to the empty
string and no search is made.This will, however, indicate that you havefinished recording
payments.

12/84

From the edit level, press F3 and to start entering getrec.

proc getrec

rem ****x* locate a particular record **x*x**

cls

let ok$ ='"n"

input "who? '"'s ng$
if ns g>reee

find n$

while ok$ <>"y"'"" and found()

print titleS ; " "s fname$(1); ' ": surname$
print street$

print "OK (y/n)? "3

let ok$S =lower(getkey())
cls

if ok$S <>"y"

continue

endif

endwhile

if not found()

print n$; " not found!

endif

endif

endproc

The search uses the find command, so that the text is found in any string field. You
can therefore identify a record by name or by address. Of course,thefirst record which
matches may not be the one you want, so we have to be able to continue the search.
This is the purpose of the while endwhile loop. This prints out the name andfirst line
of the address,to identify the record, and asks youif that is the right record. If you do
not respond by pressing the Y key, it continues the search. The loop endseither when
you answerby pressing the Y key or whenthe text is not found in any of the remaining
records. Note that the function found() returns a true (non-zero) value if the search is
successful.

Since ok$ could initially be “y” (from a previous successful search) we must give it some
other value at the beginning of the procedure, before entering the loop. This makes sure
that the loop will be used at least once.

We can now write the pay procedure:

proc pay

rem *****x record subscription payment *****

cls

let nS =!" x"

while n$ <>"

getrec

if okS ="y"

let issues =issues +6

update
endif

endwhile
endproc

The loopin this procedure continues until n$ is an empty string. This allows you to record
several payments without having to select the pay option for each one. When you have
finished, just press ENTERin response to the “who?” prompt. If the value of ok$is “y”
after the call to getrec then the payment is recorded by markingit as valid for a further
six issues.

Again we haveto set the initial value of n$ to some appropriate value (anything except
the empty string) to make sure that the procedureis not affected by a previous operation.

The procedure to allow you to change the contents of a record is now very easy. Again

you must be able to select a particular record to change, so the general structure can
be identical to pay.

12/84

Programming

Changes

Programming

24

PARAMETERS

proc change

rem ***** alter record *****

let n$ =!'x"'
cls

while n$ <>"

getrec

if ok$S ="y"

alter

cls

endif

endwhile

endproc

We shall now take a short break from the developmentof the program to describe the
use of parameters with procedures. You can use a parameter to pass a value to a
procedure, rather than using the value of a variable. We shall show you a few examples
of how they can be used. You do not need to save these proceduresin “maillist” and
you may delete them before moving on to the section of the program which deals with
labels.

Try the following simple example. Using the line editor, you add the parameter to the
line containing the procedure name.

proc test; a

print 5*a

endproc

This defines a procedure called test which requires one parameter, ‘a’ Notice that the

parameteris separated from the name of the procedure by a semicolon. Whenever you
use the procedure you must always supply a value for the parameter. For example, you
could type:

test; 3

which will print the value 15 — the number(3) has been passed to the procedure as
the value of the variable a.

You may specify any number of parameters for a procedure, provided you separate
them by commas. For example:

proc trial; a,b,c

print a * b * c

endproc

which you can call by:

trial; 3,4,5

The values you supply do not haveto beliteral values, but could be variables, as shown

below:

let x = 2

let y = 5

let z= 7

trial; x,y,z

Note that the namesof the variables do not have to be the same as the names used
within the procedure. We can distinguish between the formal parameters (e.g. a,b,c) in
the definition of the procedure, and the actual parameters which are the actual values
that are passed to the procedure.

You can also pass the results of expressions:

trial; x*2,z/y, (z-y)*x

You are not restricted to using numeric variables but can also pass strings (or string
expressions) as parameters, provided you specify string variablesin the definition of the
procedure. For example:

12/84

proc try; a$

print a$

endproc

let t$ = "message"

try; t$

The only requirementis that the number and types of parameters supplied must match
the list of formal parameters in the definition of the procedure.

The reasonfor the brief interlude about parametersis that they give a neat way of writing
the procedure to print an addresslabel. For the purposes oftesting we shall first write
the procedure to show the addresses on the display andlater convert it to send the
outputto the printer. We shall assume that the labels are eightlines of print-outin length.
If this is not right for your printer and label combination you will have to change the
numberoflines of space in the procedure sothatit matches your requirement. Remember
to start saving your procedures in “Maillist” again.

First we shall write a procedure that displays a single line, the contents of which are
passed via a parameter.

proc doline; x$

print x$

endproc

We can now usethis procedure to display eight lines of text for the address label.

proc dolabel

rem ****x* print Labels ***x*xx

if issues

if issues =1

doline; "REMINDER - Subscription Now Due"
else

doline; '!

endif
doline; '™"

doline; titleS +" "+fname$S (1)+'". "+surnames
doline; street$

doline; town$
doline; county$
doline; postcode$

doline; '"

let issues =issues - 1

update

endif

endproc

The procedureincludes a reminderin the addresslabelif the person is aboutto receive
his or her last issue. Each time a labelis printed, that person's issue count is reduced
by one. If this number has reached zero then the label is not printed.

You can begin to see how useful parameters can be — without them this procedure
would be much longer. Look how easyit is to combine the title, initial and surnamefor
the first line of the address.

Perhaps you are wondering why we wentto the trouble of defining doline when we
could have just used print statements throughout dolabel. The reasonis that the routine
in its present form shows the addresses on the display screen. We can convert it to
send its output to the printer merely by changing oneline in doline, instead of having
to change every print statement in dolabel. All we need to dois change dolineto read:

proc doline; x$

lprint x$

endproc

12/84

Programming

Address Labels

25

Programming

Leaving the Program

26

ERRORS

Finally we can write the procedureto print all the address labels:

proc despatch

cls

all

dolabel
endall

endproc

The final option is to leave the program when you havefinished. This procedure can
be very simple — all it has to do is to make sure that thefile is closed properly before
returning control to the keyboard. We have also added a short sign-off message to make

it clear that the program has ended.

proc bye

close

print "bye!

stop endproc

It is quite likely that sooner or later you will make an error while using this program.

You may, for example, accidentally press the ESC key or you may type in sometext
when a numberis expected. This type of mistake is detected by Archive and normally
results in the display of an error message anda return from your program to the keyboard.

You can use the error command to mark a procedure to be treated specially if any error

is detected. Any error occurring in the marked procedure, or any procedurethatit calls,
results in an immediate, premature, return.

The normal method of handling errors is switched off for the marked procedure and

it is left to you to decide how to deal with it. You can find out the numberof the last
error that occurred by using the errnum() function. You can use it to read the error
number more than once as the value is only cleared to zero by the next use of the
error command.If no errors have occurred since the start of the program, or since the

last time error was executed, then errnum() will return a value of zero.

This method, although not easy to understandatfirst, gives you a very powerful and
flexible control of how to deal with errors. The following example showsa typical way
of using error. It gives you an error-resistant method of inputting a number.

proc dotest

input x

endproc

proc test
let n =1

while n

error dotest

let n =errnum()

ifn

print "You made error number " ;n ;'', try again"

endif

endwhile
endproc

Thefirst procedure simply waits for your input to the variable x. The second procedure
handles any error during the execution of the input procedure. If any error occurs within
dotestit will be terminated prematurely and the error numberwill be set. This number
is then read by errnum() and, if it is non-zero, the error messageis printed (this error
message could, of course, be anything youlike). Since these statements are enclosed
in a while endwhile loop, any error will cause them to be executed again. The error
numberis cleared by error, ready for the next try. You can not leave test until you have
typed in a valid number.

This example reports the number of the error that was detected. On most occasions
you will not be concerned about which error occurred. The main use of errnum() is
to differentiate between there being no error and there being a detected error of any
type. A list of error numbers and possible explanations is included in the Reference
chapter.

We can now write a procedure which will allow you to select any one of the six options
with a single keypress.It is sufficiently simple that no explanation is necessary.

12/84

proc choose

rem *xx*x*x choose an option **x*xx**

cls

print

print ' Add Despatch Pay Change Wipe Quit";

print “? "}

let choice$ =lower(getkey())
print choice$

if choice$ ="a'': insert endif

if choice$ ="d"': despatch endif

if choice$S ="p"': pay endif

if choice$ ="c": change endif
if choice$S ="w'': wipe endi f

if choice$ ="qg"': bye endif

endproc

All that remains to be done to complete our program is to write a start-up procedure
which opensthefile and calls choose. We must include choosein a loopso that you
are offered the options again, each time you complete your previous selection.

You will see that the while endwhile loopin the following procedurewill never end. Such
a loop will only come to an end whenthe expression following while has a zero value.
In the above procedure the expression always hasthe value 1, so the loop will continue
indefinitely. The only way of leaving this loop is to choose the Quit option. The stop
command in bye immediately returns control to the keyboard.

proc start
keke rem Start procedure **xx*x*
cls

open ''newmail.dbf!'

while 1

error choose

let n =errnum()

ifon

print "Mistake - Press any key to continue"
let m$ =getkey()

endif
endwhile

endproc

Within this loop is a sequence of statements which handles any errors, using a similar
method to that describedin the previous section. If you make a mistake the program
will not continue until you press a key. This allows you to look at what you havejust
done so that you can find out how you madethe error

The main procedurein the mailing list program is called “start” This is so that you can
use the run command whenusing the program. We have already used this command
when we used the “loader” program to load the ‘gazet” datafile

Save this final procedure in “maillist”. When you want to run the program you will need
to load the proceduresinto the computer's memory and then execute the main procedure,
which will call all the others. One way is to use the load command and then type in
the name of the main procedure, for example:

load "maillist"!

start

The run command will load a named program and then automatically execute the
procedurecalled “start”(if it exists). You can run the program exactly as in the previous
example just by typing:

run "maillist"

The remaining two sections of this chapter include some general purpose procedures
which you may find useful.

Mostvariables that appearin proceduresare global. This meansthat they are recognised
throughout the program. They may be used or changedin any procedure, and notjust
the procedure in which they are first assigned a value.

12/84

Programming

THE RUN
COMMAND

LOCAL VARIABLES

27

Programming

28

The variables used as formal parameters in a procedure are local variables and they
are not recognised outside the procedure in which they appear.

The following example may help to make the distinction clear. Before going on, type
newto clear the computer's memory. First we create a procedure which uses twolocal
variables a and b§, as well as assigning values to two normal (global) variables u and v§.

proc demo; a,b$

print a,b$

let u=3

let v$="text"

print uj;v$

endproc

Then we use demo:

demo 5;'"'words"

All four values are printed showing that all four variables are recognised inside demo.

Typing

print u;v$

shows that both of these variables are also recognised outside the procedure. However,
typing

print a,b$

results in an error because a and b$ are not recognised outside demo. All formal
parameters are local variables, but you can also declare other variables to be local, as
in the following example:

proc dumbo

print "inside dumbo"

print p; q; r
endproc

proc dummy

local

let p

let q

let r

print "inside dummy"

print p; aq; cr
dumbo

endproc

If you attempt to use dummy by typing:

t
o
u
w
a

W
N

dummy

you will find that the values of p, q and r are all recognised (and therefore printed) in
dummy, but dumbo does not know the values of q and 1, which are local to dummy.

The valuesoflocal variables are not defined anywhere except in the procedure in which
they are declared — not even in procedures called from the declaring procedure. The
variable p is global and is recognised everywhere.

You may be wondering whylocal variables are necessary. Toillustrate their usefulness,
suppose you write a program containing several procedures that you, or someoneelse,
originally write for use in other programs.It is quite possible that two or more of these

procedures might use variables with the same namefor quite different purposes.If these
variables were global then one procedure could alter a value so that it would be wrong
for another. In such a situation you would have to check all the procedures that you
use and,if necessary, change the namesof the variables.If, however, the variables were

local it would not matter if they had the same name. Provided they were in different
procedures, changing one would have no effect on the other.

Furthermore, it does not matter if a procedure calls another which uses the same name
for a variable — provided at least one of them is local. For example, the procedure choose
in the section on errors, earlier in this chapter, declared the variable choice$ to be local.
This meansthat there is no need to check whether any of the many procedures called

by choose also use choice$ — the called procedures cannot changethe value of choice
in choose.

12/84

Displaying a prompt and waiting for a key to be pressed is oneof the most commonly
neededactions,soit is worth writing a general-purpose procedure. The procedure must
be able to display a wide range of messages. A simple way of allowing the procedure
to print any messageis to pass the message to the procedurein the form of a parameter.

proc prompt; m$

print mS + '"s ts

let x$ =lower(getkey())

print x$

endproc

The message to be displayed is passed to the procedure as a parameterin the local
variable m$. The function getkey() waits for a key to be pressed andreturns the ASCII
codefor the key. In this procedure the ASCII code is converted to lower case by the
function lower(), so that the result is independent of upper or lower case. Finally the
resulting value is assigned to the variable x$. This is a global variable, so that the key
that was actually pressed is available to any other procedure in the program.

A useful procedure is pause. It uses prompt to print a message and then simply waits
until a key is pressed. Since you are not usually interested in knowing which key was
actually pressed, it uses a local variable, y$, to preserve the original contents of x$.

proc pause

rem ****x* wait for any key ***«**
local y$

let y$ =x$
print

prompt; “press any key to continue!
let x$ =y$
endproc

Accepting text as typed inputis quite simple. Any collection of charactersis a valid text
string (evenif it does not make sense) and will not cause an system error. You will not
normally need to take any special precautions when accepting text input. It will usually
be sufficient to use a line such as the following, which asks you to type in your name:

input "Please type your name: '"'sname$

Note that a spaceis included asthe last character of the prompt text; this small point
makesa lot of difference to the appearance of your program when you useit.

You can input several items with one input statement. All you have to do is to include
all the prompts and variable names, separated by semicolons.

input "Your first name? ';fname$;"Your surname? '";sname$;

This last input statement also ends with a semicolon — this stops the cursor moving
to the following line after you have typed your input.

When you use the input command to entertext to a string variable the computerwill
accept anything that you type, without complaint. If, however, you try the same thing
with input to a numeric variable you will get an error messageif you type anything except
a valid number. Assuming that you do not want to leave your program every time your
finger slips while you are typing in a number, you must make sure that your program
can cope with sucherrors.

The most useful way is to make useof the error command, which was described earlier
The following procedure, for example, will accept any valid numberwithin a specified
range. It even provides the display of any prompt message you want to appear.

12/84

Programming

PROMPTS

PAUSE

DATA ENTRY
Text

Numbers

29

Programming

proc getnum; m$,min,max

rem ****x* get number in range *****

local wrong
let wrong=1

while wrong

print m$; ''2 "s
error readnum

let wrong=errnum()

if not wrong

if num<min or num>max
let wrong=1

print "Allowed range is "smin;"' to 'smax
endif

endif
if wrong

print "Try again"

endif
endwhile

endproc

Since error must be followed by the nameof a procedure, we define readnum to input
a value for the variable num.

proc readnum

input num
endproc

Suppose you want a procedure that checks that a numberis within the range 1 to 10.
You can do this using getnum in the following way:

proc check

getnum; "Numeric value?",1,10
endproc

30 12/84

This chapter extends the explanation of how to use the Archive programming language
by describing how to work with two or more openfiles. When you have more than one
file open at the same time you must be able to identify whichfile you want to use for
any particular operation. You must give eachfile a unique /ogicalfile name when you
open orcreate it and then referto it by that namein all commandsthatrefer to thefile.

Archive automatically supplies the /ogicalfile name, ‘main’, when you opena singlefile.
It is called a logical file name to distinguish it from the physical file name — the name
you give to the file when you saveit.

Since a program refersto a file by its logical file name, you can write a program that
will work with several different files.

Logical file names are essential for multiple file operations since you can only open a
secondfile by using both its physicalfile name andits logical file name. Note that the
logical file name is not saved with the file whenit is closed and must be specified each
time the file is opened.

Two or more data files could contain fields with the same name. When this happens
you can identify the file to which the field belongs by adding the logical file name to
the field name. For example,if the field country$ appearsin twofiles whose logicalfile
namesare “main” and “b” you could refer to each of them respectively as “main.country$”
and “b.country$”

Thefirst example demonstrates how to add,delete or renamefields within an existingfile.

Suppose that you want to make some changesto the ‘gazet”file, to create a newfile
containing only European countries. The ‘continent$” field becomesirrelevant and we
need notinclude it. We shall also rename the “pop” field as “population”

The most convenient way of changing thefile is to create a secondfile containing the
fields you want and then to copy the required records from the old file to the new one.
Let us call the newfile ‘europe’ The following procedure will do the rest of the work.

proc start

rem ***** create europe file ***x**

create "europe" logical "e"
country$

capital$

Languages$

currency$
population

gdp
area

endcreate
look '"gazet" logical '"g!"!

select continent$=""EUROPE"
all itgit

print at 0,0;g.country$;tab 30
let e.country$=g.country$

let e.capital$=g.capital$

let e.language$=g. lLanguage$
let e.currency$=g.currency$
let e.population=g.pop

let e.gdp=g.gdp
let e.area=g.area

append ''e!'

endall
close ''e!
close ''g"

print

print "DONE"
endproc

12/84

CHAPTER11
USING
MULTIPLE
FILES
LOGICAL
FILE
NAMES

CHANGING THE
RECORDS OF A
FILE

31

Using Multiple Files

THE CURRENTFILE

32

STOCK CONTROL

The Stock File

The Supplier File

You can see, from this example, that you can use the same namefor a field in both
files — they can be distinguished by including the logicalfile name. If you do not include
the logical file name then it will be assumed that the currentfile is to be used. The last
file to be opened automatically becomesthe current file. In this example the current
file will be “gazet” (with logical file name “g”) so we could make use of this by simply
writing the g before the field name in the previous program.

If you do notinclude the logigalfile name in any case whereit is optional, Archive will
assumethat the commandrefers to the currentfile. It is usually safer to include the logical
file name explicitly, to avoid any possibility of confusion.

You can, at any time, specify the current file by means of the use command.If you
included the command:

use itett

in the above example, then “europe” would be the currentfile until you changedit again,

either by opening anotherfile or by means of the use command.

Now for a more complex example. In a stock control system you will need to:

Find information on a particular stock item.

Obtain a report on the current stock levels of all items.
Record sales and modify the stock records accordingly.
Order new supplies, to maintain adequate stock levels.
Record deliveries of stock.

You will obviously need file to hold the details ofall iterms held in stock andit is convenient
to have a secondfile to hold details of all your suppliers. You will need to be able to
accesseitherfile from the other — for example you may want to know all the possible
suppliers of a particular item, or to find out what items are supplied by a particular
company.

In order to keep the application as simple as possible we shall not use the menu-driven
approach of the examples in the previous two chapters. We shall write it as a series
of separate commands which can be used — like the standard commands — bytyping
their names.

Since the procedureswill be strongly dependentonthefile structure we use, we must
first give some thought to their appearance.

The stockfile must contain full details of the stocksituation for each item. The following
list explains all the fields we shall use.

Field Name Use Example

stockno$ The internal stock code A101
description$ Item description Widget, large
qty Numberin stock 500
sellpr Selling price 1.25
reorderlev Reorder when stock 200

level falls below this value.
buyqty How many to order 400

We can create thefile by:

create "stock'' logical ''sto"

stockno$

description$

qty
reorderlev

sellpr

buyqty
endcreate

This file holds the names, addresses and telephone numbers of the companies that
supply the goodsyousell. It will be useful also to include the nameof a contact person
in the company. In order to be able to accessthis information efficiently we shall include
a code for each company. We shall use the following fields:

12/84

Field Name Use Example

coname$

street$

town$S

county$
postcode$

contact$

tel$

code$

The company’s name
First line of address
Second line of address
Third line of address
Last line of address
Name of a contact

Telephone number
Your code for the

Wonder Widgets plc

27 Belmont House

LIVERPOOL

Merseyside

L31 2HK
Andrew Cummins

051-532 7133
a

company

We can create the file by:

create "supplier" logical "sup"

coname$

street$

town$

county$

postcode$

contact$
telS

code$

endcreate

This file forms the link between the previous twofiles. It uses the following fields:

Field Name Use Example

stockno$ Your stock code A101
code$ Your code for the a

supplier
scode$ The supplier's code 123-456

for the item
price The supplier's selling 0.87

price
delivery The supplier's delivery 28

time, in days

Eachrecord in thisfile links one recordin the stockfile with one record in the supplier
fle. The above example shows that Wonder Widgets (supplier code ‘a’) can supply you
with large widgets (stock code ‘A101’). In addition, we include details of the price, delivery
time and the supplier's own stock code. Theseitems are useful when you order more
stock.

Usingthisfile allows you to cater for the cases where one supplier supplies more than
one stock item (equal values for code$, but different values for stockno$) and where
onestockitem is obtainable from several suppliers (equal stockno$ butdifferent code$).

Create the file with:

create "orders" logical "ord"

stockno$
code$

scode$

price

delivery

endcreate

Having created thesefiles, we now need some procedures to handle the information
they will contain. You will find that the most frequently-neededfacility is to find information
about a particular stock item in response to customer enquiries. You will need to find
the information as quickly as possible, but may needto find a particular record from
either the part numberor the description. We shall therefore use the find command
so that you can give any valid text to start the search.

12/84

Using Multiple Files

The Orders File

Enquiries

33

Using Multiple Files

34

Stock Report

The procedure must be able to ask for you to confirm that the record is the one you
require. We shall delegate this task to a separate procedure, so we can useit in different
situations if necessary.

proc confirm

print : print "Confirm ¢y/n)"';

let yes=lower(getkey())="y"

cls

endproc

It leaves the variable yes containing 1 if you press the Y key — otherwise the value
is zero. Note the use of the = sign for assignment and also in a logical condition.

proc inquire

rem ****x* jnquire stock item **x*xx*x

print

input "Stock item? ''; name$

use "sto"

find name$

let yes=0

while found() and not yes

display
sprint

confirm

if not yes

continue
endif

endwhile

if not found()
print
print name$; '' does not exist!
endif

endproc

This procedure merely locates the correct record. A more usable procedure for
interrogating the stockfile is query:

proc query
inquire

clear

endproc

This uses another procedure, clear, which waits until you pressa key, clears the screen
and then prints list of the commands you canuse. We shall leave this procedure until
we have written the proceduresit mustlist. Remember to leave edit from time to time
to save these procedures as you enter them.

We can also write a simple procedure to produce a general stock report.

proc report
rem ***** stock report *****

cls

print tab 2; "ITEM"; tab 11; "CODE";

print tab 20; "QUANTITY"; tab 31; "PRICE":
print tab 40; 'STOCK VALUE";

print

let total=0

use "sto"

all

print description$(to 10);tab 11;sto.stockno$;

tab 20;qty;
print tab 31;"£";sellpr; tab 40;"£"ssellpreaty

let total=totaltsellprxqty

endall
print

print "Total stock value =f"; total

clear

endproc

12/84

Using Multiple Files

All we need to do to record a sale is to subtract the numberof items sold from the Recording Sales
relevant stock record. It is advisable to include some forrn of confirmation that we are
dealing with the right stock item and that the stock is sufficient to meet the order

proc quantity

rem ***** print items in stock **x*xx**

inquire

print

input "How many? '': num

print

cls

print num;" * '"ssto.stockno$;" ("ssto.description$;'"')"
endproc

proc sale

rem ***** process sale **x***
quantity
if num<=sto.qty

print "Order value:- £''; num*sto.sellpr

confirm

a= if yes

let sto.qty=sto.qty-num

update
sprint: rem *** show the modified record ***

endif

else
print "Not enough stock"!

endif

clear

endproc

Recording Incoming
The following procedure allows you to record the delivery of stock. Again it requests Stock

confirmation of the details you type in before accepting them and updating the relevant
stock record.

proc delivery

rem ***** jn case stock on delivery *****
quantity

confirm

print

if yes

print "Accepted"

let sto.qty=sto.qty+num

update

sprint

else

print "Delivery not recorded"!

endif

clear

endproc

So far our procedures have only referred to the stockfile. When we want to order more Ordering New Stock
stock we shall have to refer to the supplier and ordersfiles for the name and address
of the company, the price, and so on.

Assuming that we have identified the item in the stockfile (with inquire) we select, from
the ordersfile, those records that have the correct stock code. These records contain
the codesfor all the companies that can supply the item. Since the records also contain
the price and delivery time for each supplier, we can decide whether we want the
cheapest item or the shortest delivery time.

We use locate as a fast way of finding the required supplier record. This means that
— the supplierfile must be ordered (with respect to the supplier code, code$) before we

use doorder.

12/84 35

Using Multiple Files

proc doorder

rem ****x*xorder new stock ***x**

inquire

use "ord"

select sto.stockno$=ord.stockno$

print

print "fast or cheap (f/c)";
if lower(getkey())="f"!

fast

else : cheap

endif

let ycode$=scode$
reset
use "sup"

locate comp$

doform

print

print "Expected delivery is "sdel;" days"
clear
endproc

The procedure cheapfinds the supplier with the lowest price, and fast works in the same
way to find the supplier with the shortest delivery time.

proc cheap

rem **x**x*x find cheapest ***x**
use "ord!!

let pri=price

let comp$=code$

let del=delivery
all

if price<pri

let pri=price

let comp$=code$
let del=delivery
endif

endall
endproc

proc fast

rem ***** fastest delivery *x*x*xx
use "ord!

let del=delivery

let comp$=code$
let pri=price

all

if delivery<del

let del=delivery

let comp$=code$
let pri=price

endif

endall

endproc

The procedure doform producesthe actual order form. You should modify it to your
own requirements. We shall use a simple version which shows the orderdetails on the
screen.

proc doform

rem ***** produce order form *****

cls

print

print sup.coname$

print sup.street$

print sup.county$

print sup.postcode$

print

print "Please supply "; sto.buyqty;

36 12/84

Using Multiple Files

print " * part number "';

print ycode$

print "(":s sto.description$; '"') ":

print "at £"s pri; ' each."

print

print "Total value: £"; sto.buyqty*pri

endproc

The final command that we needis one to close all the files when we have finished

using them.

proc bye
confirm

if yes

cls
print : print "bye"

close "sto"

close ''sup'"'
close "ord"
cls

endif

endproc

We can now write a short procedure to run the application. It must openall three files
with the correct logical file names, clear the display and show you the additiona

commandsthat you have. Note that, in normal use, the stockfile is the only one whose
records will need to be changed. The othertwofiles are opened as read onlyfiles. It
also orders the supplier file so that we can locate a companybyits reference code.

proc start
cls
print at 5,5; "STOCK CONTROL DEMONSTRATION"!

print

open "stock" Logical ''sto"
look "supplier' logical "sup"

look "orders" logical "ord"
use "sup"

order code$; a
clear

endproc

Finally we can write clear, which simply clears the screen and shows list of the extra
commandsavailable:

proc clear

rem ***x**x*x clear screen and get command *x*xxxx'
local x$
print

print "Press any key to continue ";
let x$=getkey()
cls
print

print "Query Report Delivery Doorder Sale Bye'': print

print "Type in your choice"

endproc

12/84 37

CHAPTER 12
QL ARCHIVE
REFERENCE

VARIABLES

SYNTAX

EXPRESSIONS

Syntax Conventions

38

Syntactic Entities

Variable names may be upto thirteen characters in length, and must not start with a
digit (0 to 9). They may contain any combination of upper or lower case alphabetic
characters, or digits. Other characters are not allowed, except for $ and . which have
special meanings.

If a variable name ends with a it is a string variable. Strings may be up to 255 characters
in length. If the name does not end with a $ the variable is numeric. A variable name
may refer to the contents of a record in file and is then knownasa field variable. Field
variables are normally assumedto refer to the currentfile but may be madeto refer
to another openfile by including a logicalfile name, separated by a. from the variables
name. Such a field variable is written as:

logical__file__name. field__name

For example main.continent$. If a variable name includes a dot then it mustrefer to
a field in an openfile. If there is no dot an attempt is made to match the name to an
existing variable in the following sequence:

1 a field of the currentfile
2 a local variable (a parameter in the current procedure, if any)
3 a global variable

An error messageis given if no match is found.

The term syntax refers to the exact structure of a commandor function. The syntax of
a command specifies the parameters that the command needs, in what order they must
appear, and the symbols (if any) used to separate them.

This section describes the notation used to express the syntax of Archive's programming
language.

An expression is a combination of literal values, variables, functions and operators which
results in a single value. A numeric expression results in a numeric value and a string
expression results in a text value. Examples are:

3 * y * sin (x) + len (a$) {numeric}

“abc” + a$ + rept (” — ” 5) {string}

An expression may, as in the above examples, be composedof several sub-expressions.
In such a case you may not mix sub-expressionsof different types. They must all be
string expressions or all numeric.

The syntax definitions are similar to those used to define the syntax of SuperBASIC,ie:

Symbol Meaning

italics denotes a syntactic entity
[| encloses an optional item
eK encloses items that may be repeated

| or
{ } comment

slit literal string
S.exp string expression
n.exp numeric expression

exp expression, either string or numeric
ptm print item

var variable name, either string or numeric
lfn logical file name

fnm physical file name (up to 8 characters)
pnm procedure name

A literal string is text enclosed in quotes, for example ‘text’ or “text”

A string expressionis literal string, or a combination ofliteral strings, string variables
and string functions that results in a text value for example:

“fred”+a$+chr(72)

12/84

A numeric expressionis either a number, or a combination of numbers, numeric variables

and operators (+, -, *, /, etc) that results in a numeric value for example:

(3+x)/sin(y)

A print item is one of four possibilities: at, tab, ink, paper. A full description of a print

item in our syntax notation is:

print_item:= | at n expo, n exp
| tab 7 exp
| ink n exp
| paper n exp

Logical file names and procedure names have the samerestrictions as variable names.
Physical file names must also not exceed eight characters.

As an example of a syntax definition, consider the syntax of the order command.In
our notation it appears as:

order spec:= var; a|d
order order spec *| , order spec |*

Order therefore needs to be followed by at least one order specification which itself
consists of a variable separated by a colon from letter which must be either a or d.
In addition you can also include up to three further order specifications provided each
pair is separated by commas. Clearly the syntax notation provides a much more compact

description.

Note that the syntax notation does nottell you the meaning or purpose of the symbols
so you will have to read the rest of the description for each command. The syntax only
gives you a formal description of the number and kind of items that go to make up
a valid command.In addition the syntax notation does nottell you the maximum number
of repetitions allowed for the repeated items. Order will accept up to four pairs of a variable

and a letter.

A field is the space reserved to hold either a string or a number.

In Archive, each field is identified by a field variable name. Whether a particular field

can hold a string or a numberis dependent on the namegivento thefield at the time
it was created — string fields have a name ending with a $. An Archive string field may
hold up to 255 characters. A numeric field has a name that does not end with a $ sign.
All numbers are stored in the same amount of space, regardless of their value. The
possible range for a numberis the same as the valid numeric rangefor the arithmetic

operators.

A record is a collection of fields, whose contents are related in some way. The fields
of a record might, for example, be used to hold the name, the address and the telephone
numberof a particular person. In Archive the records are of variable length so that each
record only takes up as much room asis necessary to hold the information contained

in its fields. There may be up to 255 fields in an Archive record.

A data file is made up from a numberof related records. To continue the above example,
a data file could consist of a collection of name, address and telephone numberrecords
for many different people. The numberof records in an Archive data file is limited to
roughly 15 000. In practice, you are limited to the capacity of one Microdrive cartridge,
which will hold about 1000 records of 100 characters. A file is the basic unit that you
can save on, or load from, a Microdrive cartridge. Each file has a name to identify it.

In Archive you give a physical nameto the file whenit is created, but you can change
the logical name at any time.

When you want to read from or write to a data file you mustfirst open it. Generally
speaking, opening a datafile transfers a copy of thefile from the Microdrive cartridge
into memory although, in the case of a longfile, it is possible that only part of the file
will be present in memory at any one time.

You can opena datafile in read only mode with look which,as its name suggests, means
that you can not changeits contents. You also have the option of opening a data file

in update mode with open so that you are allowed both to read and to changeits contents.

12/84

Reference

ARCHIVE DATA
FILES
A Field

A Record

A File

Opening and
Closing Files

39

Reference

Logical File Names

PROCEDURES

THE PROGRAM
EDITOR

40

Every time you open a datafile, Archive reserves space for the field variables needed

by a record within thefile. The field variables always contain the values of the current
record.

When you close a data file with close or quit any changes that you have made are
copied into the file stored on the Microdrive cartridge. The copy held in memory is

discarded. Closing file is the only way of ensuring that the copy on the Microdrive
cartridge contains your latest version. Since an openfile uses part of the computer's
memory, you should not leave files open if you are not using them.

Whenyouleave Archive with the quit commana,all openfiles are closed automatically.

Do not turn off the computer, or remove a cartridge from a Microdrive, while the
cartridge contains openfiles.

Each opendatafile has an associated logicalfile name, givento it whenthefile is opened.
If you do not specify a logicalfile name when you openthefile, it is automatically given
the logical file name “main”

The logicalfile name is used to identify a particularfile when you are using severalfiles
at once.

A procedure is a named section of program, starting with a procedure declaration of
the form:

proc pnm|; var *|, var] *|

and ending with:

endproc

It may be referred to by name from any other program or procedure,includingitself.
It acts as though its code had beeninserted at the point from whichit is called.

In Archive, the proc and endproc commandscannot be entered directly at the keyboard,
but are added automatically when you use the program editor to create a procedure.

The program editor is entered using the edit command.

If there are no procedures presentin memory, you will be immediately offered the option
of creating a new procedure. Otherwise you are given list of all the proceduresin
memory onthe left handside of the display area. Thefirst procedureis highlighted and
is listed in full on the right hand side of the display. Thefirst line of the procedure is
highlighted to mark the current procedure and the currentline.

Oncein edit you have five options:

Select a procedure
Press TABULATEto move downthelist of procedures, press SHIFT and TABULATE
to move up thelist. The listing on the screen always shows the current procedure.

Select a line
Use the up and down cursor keys to select a line within the current procedure. The
currentline is highlighted.

Press F3 for the menu of editing commands.
There are four commands, which are selected by pressing the key corresponding to
the first letter

Delete Press ENTERto delete the procedure highlighted onthe left of the display.
Press any other key to leave the command without deleting the procedure.

New Type in the name of the new procedure and press ENTER.If a procedure
of that name already exists you will be offered the opportunity to editit.

Cut Removestext from the current procedure andtransfersit to the paste buffer.
Before calling this commanduse the up or down cursor keys to makethefirst
(orlast) line of the region to be removedthe currentline. Then use the up and
downcursor keys to mark the region of text to be removed. Press ENTERto
remove the text into the paste buffer.

Paste Copy the contents of the paste buffer into the current procedure below the
currentline. Paste will clear the paste buffer.

12/84

Insert text
Press F4to insert one or morelines of text below the currentline in the current procedure.
Type the text and press ENTER.Pressing ENTERwithout any preceedingtextwill leave

the insert option.

Edit text
Press F5 to edit the currentline of the current procedure. Theline of text is copied into
the input line and can be edited with the line editor Press ENTERto replace the old

line with the new line.

The screen editor is entered with the sedit command. It allows you to design a new
screen layout or modify an existing one. Once you have designed a layout you can save
it on a Microdrive cartridge with the ssave command and load it with the sload command.

A screen layout is composed of two parts, the fixed background text and the variable
values that are displayedin it. The screen command shows the background text and
the sprint command adds the current values of the variables it contains.

Sedit has two options:

type text into the screen background
press F3 to use a screen editing command.

There are four screen editing commandsavailable after pressing F3:

C clear the screen
V — mark a region to show variable
I set the ink colour
P — set the paper colour.

A screen layout is made active by:

sload
screen

Whena particular screen is active it will show the current values of its variables after
sprint, or when control returns to the keyboard after executing a program (or a command).
A screen layout is made inactive by clearing the screen with cls. If there is no active
screen, sprint has no effect. You may only have one screen layout in the computer's

memory at any one time.

The display commandcreates and uses its own screen layout. It will therefore replace
any other screen layout with its own design.

The following commands are available.

Scans through the logically present records of the file in the fastest possible time.

Syntax: all { /fn]: ... + endall

This scan will not, in general, be in any particular sequence. The optional logicalfile

name will force it to refer to a specified openfile. If the logical file name is not given
then it will scan the currentfile.

The all loop is primarily designed for examining the file records rather than for changing
them. Do not use update within an all loop, unless you are sure that the length of the
record will remain unchanged. You may, for example, change the value of a number,
or convert a text field to upper case. If in doubt, use a while loop — using the value
of eof() to detect the end of the file. For example

first
while not eof()

update

next
endwhile

Alters the current screen layout to display the current values of the variables.

Syntax: alter

12/84

Reference

THE SCREEN
EDITOR

THE COMMANDS
ALL

ALTER

4

Reference

42

APPEND

BACK

BACKUP

CLOSE

CLS

CONTINUE

CREATE

DELETE

DIR

You can change the contents of any one or morefields of the currentfile whose values
are shownin the screen layout. Note thatit is not necessary for all the field variables
to be shown. You can not changea field that is not shown.If none ofthe field variables
appear in the screen, Archive forces a display of thefile.

First select the field to change by pressing TABULATE or ENTER until the cursoris
at the correct field (variables that are notfields of the file are skipped). You can then
type a new value or usetheline editor to modify the existing value. Press TABULATE
or ENTERto move to the nextfield. (Pressing SHIFT and TABULATEtogether moves
back to the previousfield.)

When you have madeall the changes you want, press F5 to replace the old record
with the new one. The record is replaced automatically if you press ENTER.If the file
is ordered the new version of the record is inserted in sequence.

Addsa record to the specifiedfile, or to the currentfile if the logicalfile nameis not given.

Syntax: append| /fn|

Thefields of the record take the current valuesof the field variables.If the file is ordered,
the insertion is in sequence.

Moves backwards onerecord in the specifiedfile, or in the currentfile if the logical file
nameis not given.

Syntax: back| /fn |

Makes a copyof the specified file. You should make copiesof all your files, to protect
against accidental damage or erasure.

Syntax: backup olafnm as newfnm

Closes the specified file, or the currentfile if no logical file name is specified.

Syntax: close /fn |

Clears the display area and switches off any display screen. See screen, sload, sprint.

Syntax: cls

Continues the previous search orfind, from the record following the current record in
the currentfile.

Syntax: continue

Creates a named openfile whose records contain thefields given bythelist of variables
specified in the command. You have the option of specifying a logical file name — if
you do notthefile is created with the logical file name “main”

Syntax: create fnm | logical: /fn | : var *[: var|* : endcreate

Deletes the current record from the specified file, or from the currentfile if no logical
file nameis given.

Syntax: delete [/fn |

Warning: Use this commandwith care since you can not recover the deleted record.

Displaysa list of files on a Microdrive cartridge.

Syntax: dir [drive |

You may specify the Microdrive to be either mdv1 or mdv2.If you do notinclude the
Microdrive name Archive will automaticallylist the files on the cartridge in Microdrive 2.

Before showing thelist of files, Archive displays the volume nameof the cartridge (the
name you gave when you formatted it).

12/84

Showsthe logicalfile nameof the currentfile and list of the field names and the values
of the field variables for the current record. If the file is sorted, it also shows the sort

fields and their sort priority.

Syntax: display

The command replaces any existing user-defined screen layout with this list, which

becomes the active screen layout.

Syntax: dump | ; var | *[, var |*

Prints the specified fields of the selected recordsof the currentfile in tabular form sert
output. If you do not give list of field variable names,all the fields are printed.

You can divert the output to a Microdrive file with spoolon.

Calls the procedure editor to create a new procedureorto edit an existing procedure.

Syntax: edit

Seeall.

See create.

Syntax: error pnm| ; exp *[, exp |*|

Marks a procedure for the purposesof error-handling. Any error which occurs during
the execution of this procedure, or any other procedure whichit calls, causes a premature
return from the marked procedure. The procedure can determine the nature of the error

by using the errnum() function to read the error number. This error numberis cleared
each time that error is executed.

Saves the namedfields of the selected recordsof the current Archive file on a Microdrive
cartridge in a form suitable for import to QL Abacus or QL Easel.

Syntax: export fnm | ; var | *[, var|* | quill |

If you do not specify list of field variable names,all the fields are exported.If you include
the optional parameter quill, (separated by at least one space from the last variable name)
the file is exported in a form suitable for import by QL Quill.

The export file is named fnm and, unless you specify your ownfile name extension,
Archive uses the extension __EXP.

See the Information section for a full discussion of import and export.

Rewindsthefile to the beginning and searchesfor thefirst record containing a match

to the specified string in any string field. The match is independent of upper or lower
case text.

Syntax: find s.exp

You can continue the search with the continue command, and determine whether the
search was successful by examining the value returned by the found() function.

Finds the first record of the specified file, or the currentfile if no logical file nameis
specified.

Syntax:first [/fn |

Formats the cartridge in Microdrive 2 (the right hand drive). It gives the cartridge the
name you specified. This name is reported when you subsequently use dir to show

a directory of the files on that cartridge.

Syntax: format “you specified”

12/84

Reference

DISPLAY

DUMP

EDIT

ENDALL

ENDCREATE

ERROR

EXPORT

FIND

FIRST

FORMAT

43

Reference

44

IF

IMPORT

INK

INPUT

INSERT

Allows a specified condition to control subsequent processing.

Syntax: if nexo: ... [: else: ... | : endif

Without else.
If the expression is non-zero, the following statements are executed.If the expression
is Zero execution transfers to the statement following endif.

With else.
If the numeric expression is non-zero, the statements between if and else are
executed. Otherwise the statements between else and endif are executed.In either
case execution continues with the statements following endif.

Readsa file, namet, exported from QL Abacus or QL Easel and produces an Archive
data file name2. As with open and look you have the option of specifying a logicalfile
name for the datafile.

Syntax: import name? as name2 [logical /fn]

where: name?:= fnm
name2:= fnm

See the Information section for a full description of import and export.

Sets the foreground colourfor all following text to the colour specified by the value of
the expression.

Syntax: ink n.exp

The colours are: O and 1 black

2 and 3 red
4 and 5 green
6 and 7 white

If the expression evaluates to more than 7, the value taken is the remainderafter division
by 8, for example ink 9 is equivalent to ink |, both setting the print colour to black. If
ink is used within a print commandit will only change the print colour for the duration
of that command.

Requests input from the keyboard to the variableslisted in the command. Eachvariable
in an inputlist may be precededbya initial string which will be displayed as a prompt
for the input. All input items must be separated from each other by semicolons. If the
list has a final semicolon, the cursor will not move to a newline after the input.

Syntax: input [var | slit | ptm *[; var | slit | ptm |*][;]
Thelist of input items may include the cursor-positioning items

at linecolumn

tab column

where:line:=1n.exp,
column: = n.exp

Thefirst of these positions the cursor at the specified line and column position, and
tab movesthe cursorto the specified columnwithin the currentline. If the cursoris already
to the right of the specified column, tab will have no effect.

These two items may not be used outside an input or a print command.

You may also use ink and paperas inputitems. If used within an input command they
will only affect the ink and papercolours to the end ofthe input, when the colourswill
return to their original settings.

Adds a new record to afile.

Syntax: insert

Uses the current screen layout to display the current values of the variables. You can
type a new value for any one or morefields of the currentfile whose values are shown
in the screen layout. Note thatit is not necessaryfor all the field variables to be shown.
You cannottype a valuefor a field that is not shown.If noneofthefield variables appear
in the screen, Archive forces a display ofthefile.

12/84

First select a field by pressing TABULATE or ENTERuntil the cursoris at the correct
field (values that are notfields of the file are skipped). You can then type a new value.
Press TABULATEor ENTERto move to the next field. (Pressing SHIFT and TABULATE
together moves back to the previousfield.)

Whenyou have typedall the values you want you should press F5 to add the new record
to the file. The record will also be addedto thefile if you press ENTER whenthe cursor

is in the last field. Anyfield that you have not given a value will be zero(if it is a numeric
field) or an empty string(if it is a textfield). If the file is ordered, the new recordis inserted
in sequence, otherwise the insertion takes place at an unspecified position.

Erases the specified file from the Microdrive cartridge.

Syntax: kill fam

Warning: Use this command with care since you cannot recover the erasedfile.

Finds the last record of the specified file, or the currentfile if you do not specify a logical

file name.

Syntax: last [/fn |

Used to assign a value to a variable (as in SuperBASIC).

Syntax: let var = exp

Lists all the procedures currently in memory on a printer.

Syntax: llist

Loads the specified procedure file from a Microdrive cartridge into memory.

Syntax: load | object | fnm

If you include the optional object Archive will expectthefile to be in binary rather than

ASCIl form, see save.

Within a procedure, forces the following list of variables to be local variables. These
variables exist only within the procedure in which they are declared and are undefined
in any other procedure. Their values are destroyed on exit from the procedure.

Syntax: local var *| , var|*

Finds, in an orderedfile, the first record whose field contents match the expression(s).

Syntax: locate exp * | ,exp |*

The record is located much more quickly than if you used find, but the file mustfirst
have been sorted. Each expression must explicitly refer to the contents of a particular

sort field. In the case of a string field the match is case-dependent.

lf you have orderedthefile with respect to more than onefield, you can specify several
expressions (one for each sort field). The expressions are separated by commas and
must refer to the fields used to orderthefile. They must be in the same sequence as
in the preceding order command. For example:

order animal$; a , weight ; a

locate "Elephant" , 2000

will find the first record in which the field animal$ contains the text “Elephant” and a

weight that equals (or exceeds) 2000.

If there is not an exact match locate will still find a record. This record will be the first
one whosefield contents “exceed” — in the sense of the ordering (i.e. “d” comesafter
‘e’ if the file is sorted in descending order) — the specified values.

Opens the namedfile for read accessonly.If the logical file name is not specified, it
is given the default value “main’

Syntax: look fnm | logical /fn |

12/84

Reference

KILL

LAST

LET

LLIST

LOAD

LOCAL

LOCATE

LOOK

45

Reference

46

LPRINT

MERGE

MODE

NEW

NEXT

OPEN

ORDER

PAPER

Displays the values of the following list of items on a printer attached to SER1, in the
same way asfor llist.

Syntax: Iprint | exp | ptm *[; exo | ptm]«| [5]

Adds the procedures of the specified program file to the procedures already in the

computer's memory.If the file contains a procedure with the same name as one already
in memory, the new procedure replaces the old one.

Syntax: merge | object | fnm

If you include the optional object Archive will export the file to be a binary rather than
ASCII format. See Save.

Changes the form of the display.

Syntax: mode var,var

Thefirst variable may have a value of 0 or 1. A value of 0 joins the control, display and
workareasinto a single region. A value of 1 separates them backinto three distinct areas.

The second variable may have a value of 4, 6 or 8 and switches the display between
showing 40, 64 or 80 characters perline.

Theinitial setting, when you load Archive for use with a monitor, is equivalent to:

mode 1,8

Deletesall the data from the computer's memory, ready for a fresh start. Any openfiles
are closed. (The command does not delete files stored on a Microdrive cartridge.)

Syntax: new

Movesto the next record in the specified file, or in the currentfile if you do not specify
a logicalfile name.

Syntax: next | /fn |

Opensthe specifiedfile for both reading and writing. Thefile is given

a

logical file name
“main” if you do not specify one.

Syntax: open fnm | logical/fn |

Orders the records of the file according to the contents of the specified fields.

Syntax: order order__spec *[, order__spec | *

where: order_spec:= var; a|d

Thefirst field specified in the list is the primary sort field. Records which have equal
contents of their primary sort field are further sorted according to the contents of the
next field in thelist (if it is specified) and so on. For each specified field an ordering
direction must be given. This mustbeeither a or d to specify ascending or descending
order respectively.

Order only takes accountof thefirst 8 characters of a text field and you may not specify
more than four fields to order thefile.

Sets the background colourfor all following text to the colour specified by the value
of the expression.

Syntax: paper n.exp

The colours are:

O and 1 black
2 and 3 red
4 and 5 green

6 and 7 white

12/84

If the expression evaluates to more than 7, the value taken is the remainderafter division
by 8, i.e. paper 11 is equivalent to paper 3, both setting the colour to red.

lf paper is used within a print command,it will only change the background colour

for the duration of that command.

Makes the record whose record numberis given by the expression the current record.

Syntax: position n.exp

Displays the values of the followinglist of items — which must be separated by semicolons
— on the screen.If the list has a final semicolon, the cursor will not move to a new
line after the display. See also Iprint.

Syntax: print [exp | ptm |*[; exo | ptm |*] [; |

Closesall files and returns to SuperBASIC.

Syntax: quit

When used within a procedure, it marks the rest of the line as containing a comment.
Any following text on that line is ignored when the procedure is executed.

Syntax: rem

This commandrestores all the records in the current file which were removed by an
earlier use of select. It destroys any ordering of the file.

Syntax: reset

Used within a procedure to cause an immediate termination of the procedure by returning

to the calling procedure.

Syntax: return

Loadsthe specified procedurefile into memory and starts execution of the procedure
called start.

Syntax: run | object | fnm

If you include the optional object Archive will expectthe file to be in binary rather than
ASCII form, see save.

Savesall procedures currently in memory as a single named file on a Microdrive cartridge.

Syntax: save | object | fnm

If you include the optional object, Archive will save thefile in binary, rather than ASCIl,
format. This means that Archive does not have to convert the program into ASCIl
characters before saving it and is therefore much faster. You can load, run or merge
such a program by adding the optional object to the appropriate command. These
operations will also work more rapidly since no conversion is necessary. Suchfiles have
an extension of __pro, rather than the normal prg.

You may also save such an object program in a form that is protected against examination
or modification. Include, instead of object, the optional protect. A program savedin this
way can only be loaded, run or merged — using the optional object with the appropriate
command.

A protected program cannotbelisted, edited or saved.If you merge a protected program
with any other program then the combination will be similarly protected. The only way
to clear the protected status is with the new command.

Saving a protected version does notaffect the copy of the program in the computer's
memory. You canstill list, edit or save the program in the normal way.

Displays the formatted screen layout previously sloaded. It does nothing if there is no
screen layout present. It does not display any of the variables in the screen.

Syntax: screen

12/84

Reference

POSITION

PRINT

QUIT

REM

RESET

RETURN

RUN

SAVE

SCREEN

47

Reference

48

SEARCH

SEDIT

SELECT

SINPUT

SLOAD

SPOOLOFF

SPOOLON

SPRINT

SSAVE

STOP

Searchesthe currentfile from the beginning until a record is found in which the specified
expression is true. This record becomes the current record.

Syntax: search n.exp

Calls the screen editor, to enable you to define a new screen layout. See Chapter 7.

Scans the whole file selecting only those records for which the specified expression is
true. The file then behaves asif only the selected records are present.

Syntax: select n.exp

You can restore all the discarded records with the reset command.

Waits for input to the variables in the following list, using the order specified in the list.
All the variables in the list must be currently displayed in an active screen layout.

Syntax: sinput var *|, var |*

Loadsa previously defined and saved display screenlayout. It also displays this screen
layout and activates the display of any variables within the screen.

Syntax: sload fnm

The displayed values are then updated automatically whenever control returns from a
procedure to the keyboard interpreter.

Directall following Iprint andllist output to the printer. This cancels the effect of spoolon.

Syntax: spooloff

Directs all following Iprint,llist and dump output to the specified file — or to the screen
— instead of to the printer.

Syntax: spoolon <fnm> |[export | dump]
or:

spoolon screen

If you are directing outputto file, it is directed via the currently installed printer driver
so that it contains all the special codes that your printer needs.

If you include the optional export, Archive ensures that the file contains only printable
ASCII codes, carriage returns andline feeds. The resultingfile is suitable for importing
into Quill.

The optional dumpallows the text to be transmitted to the file without being processed
by the printer driver. In this case all ASCII codes(including control codes) are passed
straight into the file.

Unless you specify a file name extension, Archive assumesan extensionof __lis (__exp
or _dmp if you include the optional export or dump).

The alternative form of the command —- spoolon screen — directs the output to the
monitor screen instead of the printer.

Used within a procedure to force a display of the fields of the current record.

Syntax: sprint

There must be an active screen layout (the screen layout is made active by a previous
use of screen, sload or display). If there is no active screen layout, the commandwill
have no effect. :

Saves, as a namedfile on a Microdrive cartridge, the current display area as a defined
screen layout.

Syntax: ssave fnm

It saves the text of the screen anda list of the variables in the display, together with
their positions.

Terminates the execution of all procedures and returns control to the keyboard.

Syntax: stop

12/84

Switches the trace mode on and off.

Syntax: trace

Type:

trace

to turn on the trace. In trace mode eachline of the program is displayed in the work
area of the screen, as it is executed. Press the space bar and keep it held down to
pause. The trace will continue when you release the space bar. To turn the trace off
again, type:

trace

Replacesthe current record in the specified file (or the currentfile if no logicalfile name
is given) with a record containing the current values of the field variables.

Syntax: update /fn |

Makesthe specified file the currentfile.

Syntax: use /fn

Repeatedly executes the statements between while and endwhile for as long as the
value of the expression is non-zero (true).

Syntax: while n.exp : ... : endwhile

Think of a function as a kind of recipe which converts one or moreinitial values, Known
as the function's arguments, into a different value, which is said to be the value thatis

returned by the function.

The functions provided by Archive may take three, two, one or no arguments. The
arguments for a function are placed in brackets after its name. You must not leave a

space between the name and the opening bracket, but spaces are allowed between
items within the brackets. If a function takes more than one argument, the arguments
are separated by commas. All functions must be followed by the brackets, even if they
take no arguments. The presence of the brackets is a useful reminderthat you are referring
to a function. They allow you to distinguish between a variable and a function, even
if they have the same name.

The following functions are provided.

ABS(n.exp) Returns the absolute value of the argument,i.e. ignores any minussign.

ATN(n.exp) Returns the angle, in radians, whose tangent is n.exp.

CHR(n.exp) This function returns the ASCII character whose code is n.exp. A
character with an ASCII code less than 32 is only sent to the printer
if preceded by an ASCII null. For example:

Iprint chr(0)+chr(13)

passes the ASCII character for a carriage return to a printer. This is
useful if your printer needs control code sequencesto produce special
effects — refer to your printer manual for any special codesthatit needs.

You can, for example, send an ‘A” to the screen with:

print chr(65).

CODE(s.exp) This returns the ASCII valueof thefirst character found in the specified
text.

COS(n.exp) Returns the cosine of the given (radian) angle.

COUNT(| /fn |) Returns the count of the number of records in the currentfile.

DATE(n.exp) Returns today’s date as a text string in one of three forms:

n.exp date string
0 “YYYY/MM/DD”

1 “DDIMMIYYYY”

2 “MM/DDIYYYY”

12/84

Reference

TRACE

UPDATE

USE

WHILE

FUNCTIONS

Reference

50

You must first have set the system clock, as described in the
SuperBASIC Keyword Guide.

DAYS(s.exp) Returns a numberof days, from the first of January 1583, to a date

given asa text expression of the form “YYYY/MM/DD”. The conversion
assumes the Gregorian (modern) calendaris being used. The formula
is therefore only valid for dates after 1582.

DEC(valuedp,wicth)
value: =(n.exp)

dp:= (n.exp)
width:= (n.exp)

Converts the given numeric value to the equivalent text string, in decimal
format with dp decimal places. Thetext is justified right in a field of
wiath characters. For example:

dec(1.23e1,3,10) returns the text “ 12.300” (with 4 leading spaces).

DEG(n.exp) Takes an angle, measured in radians, and convertsit to the same angle
in degrees.

EOF(| /fn |) Returns a value indicating whether you have attempted to read past
the end of the currentfile, or the specifiedfile if a file identifier is given.
The value returned is 1 if you have attempted to read past the end
of the file, otherwise it is zero.

ERRNUM() Returns the numberofthe last error which occurred (an error number
of zero indicates no errors). The error numberis the same as that

displayed together with the error message when Archive reports a
detected error.

EXP(n.exp) Returns the value of e (approximately 2.718) raised to the power of

(n.exp). The returned valuewill be in errorif n.exp is greater than +88
since the result will then exceed the numeric range of Archive.

FIELDN(n.exp], /fn|)
Returns the name of the specified field in the current record of the
specified file (or the currentfile if no logical file name is given). Note
that fieldn(O) returns the name ofthefirst field.

FIELDT(n.exp|, /fn })
Returns the type of the specified field in the current record of the
specified file (or the currentfile if no logical file name is given). Note
that fieldt(0) returns the type of thefirst field.

It returns the value O if the field is numeric, otherwise it returns 1.

FIELDV(n.exp|, /fn |)
Returns the value of the specified field in the current record of the
specified file (or the currentfile if no logical file name is given). Note
that fieldv(O) returns the value of thefirst field.

FOUND() Returns oneif a record is found by use of searchorfind, otherwise
returns zero.

GEN(value, width)
value: =n.exp
width: =n.exp

Converts the given numeric value to the equivalenttext string, in general
format. The text is justified right in a field of width characters. For
example:

gen(1.23e1,10)

returns the text “ 12.3” (with 6 leading spaces).

GETKEY() Waits for a key to be pressed andreturns a single text character which
correspondsto the key that was pressed.

INKEY() Returns the single text character corresponding to any key that was
being pressed at the time the function is called. It does not wait for
a keypress, but will return a null string (“”) if no key is pressed.

12/84

INSTR(main,sub)
main:= S.exp

sub:= s.exp

This finds the first occurrence of sub within main and returns the position
of the first character of sub in main.It will return a value of zero if no

match is found. The match is case-dependent.

instr ("January",'"Jan'") {returns 1}
instr ("January","an'') {returns 2}
instr ("January","AN'') {returns 0}

INT(n.exp) Returns the integer value of the number, by truncating at the decimal
point. The truncation always operates towards zero. Thus;

int (3.7) {returns 3}
int (-4.8) {returns -4}

LEN(s.exp) Returns the numberof characters in the specified text.

LN(n.exp) Returns the natural, or base e, logarithm of n.exp. An error results if
n.exp is negative or zero, since logarithms are not definedin this range.

LOWER(s.exp) Converts the specified text to lower case.

MEMORY() Returns the number of unused bytes of memory remaining.

MONTH(n.exp) Returns, as text, the name of a month.

For example month(3) returns the text “March’.

lf an argumentlarger than 12 is used, it is replaced by the remainder

after division by 12 so that, for example, month(13) and month(1) will
both give the result January”

NUM(value, width)
value: = n.exp
wiath:= n.exp

Converts the given numeric value to the equivalent text string, in integer
format. The text is justified right in a field of width characters. For
example:

num(1.23e1,10) returns the text “ 12” (with 8 leading spaces).

NUMFLD(|/fn |) Returns the numberoffields in the records of the specified file (or the
currentfile if you do not give a logical file name).

PI() Returns the value of the mathematical constant 7.

RAD(n.exp) Takes an angle, measured in degrees, and convertsit to the same angle
in radians.

RECNUM(|/fn |) Returns the number(counting from zero at thefirst record) of the current
record of the specified file (or the currentfile if you do not give a logical

file name).

REPT(s.exp,n.exp)
This function returns a string consisting of a number of copies of the
first character of the given text. The resulting text may be up to 255
characters in length. For example,

print rept (''*",5) {will print five asterisks}
print rept("abc",3) {prints “aaa”

SGN(n.exp) Returns +1, —1 or 0, depending on whether the argumentis positive,
negative or zero.

SIN(7.exp) Returns the value of the sine of the specified (radian) angle.

SQR(n.exp) Returns the square root of the argument, which must not be negative.

STR(n,type,dp) n:=n.exp
type: =Nn.exp
dp:=n.exp

Converts a number, n, to the equivalent text string.

12/84

Reference

51

Reference

52

ERRORS

The second parameter, type, indicates the form of the converted string
as follows;

0 decimal (floating point)
1 exponential, or scientific, notation
2 integer

3 general format

The third parameter, dp, indicates the number of figures after the

decimal point in the converted string. It should always be specified,
although its value is ignored for integer and general formats.

For example:

let a$=str(12.3456,0,2) {gives a6 the value 12.35"}
let a$ str(12.3456,1,4) {gives a$ the value “1.2346e1"}

TAN(n.exp) Returns the tangent of the specified (radian) angle.

TIME() Returns, as text, the time of day in the format “HH:MM:SS” You must

first have set the system clock, as described in the SuperBASIC Keyword
Guide.

UPPER(s.exp) Converts the specified string to upper case.

VAL(s.exp) Converts the text to its equivalent numeric value.It will only convert text
composedof valid numeric characters and the conversionwill stop at
the first character that can not be interpreted as a digit. For example,
val(1.1ABC”)will return the numeric value |.|, and val(“ABC”)will return
0.0

VALUE(s.exp) Returns the value of the variable whose nameis given by s.exp — for
example:

Let a$='"'Llen''!

let lLength=15
print value(a$+''gth'')

will print the value 15.

Note that value(fieldn(y)) is exactly equivalent to fieldv(y).

When ARCHIVEdetects an error in a commandtyped at the keyboard or in a procedure,
it displays an error number and a short error message. Examples of errors that would
be detected are:

attempting to divide by zero
if not matched with an endif

supplying a procedure with the wrong number of parameters.

If the error comes from keyboard input, the text of the statement remainsvisible in the
work area. You can press F5 to recall the text so that you can use the line editor to
correct the error. You can then press ENTER to execute the corrected statement.

If the error comesfrom a program statement, ARCHIVE shows the nameof the procedure
andtheline in which the error occurred. You can then use the program editorto correct
the error.

Whenyouuse the error commandin your programs, ARCHIVEwill not report any error
that it detects in a procedure marked with error. You are free to deal with any such error
in any way that you want(including ignoringit). You can find which error has occurred
by examining the value returned by errnum(). This number is the same as the one
ARCHIVE gives when it prints an error message.

The following list shows ARCHIVE's error numbers, together with the corresponding
messages. Where possible,thelist includes a short example of a statement that would
give the error. The error messages are not designed to pinpoint the precise error, but
are intended to give you an idea of what type of error to look for.

Those error messagesfor which there is no short example are marked with an asterisk.
They are dealt with in the notes which follow thelist.

12/84

Reference

No. Message Example

0 no error

4 command not recognized apend
2 end of statement expected let x=3 let y=4

5 variable name expected let 31=x

4 unrecognized print item print create

5 wrong data type am))
6 numeric expression expected let x="'"fred''

7 string expression expected let x$=4

8 variable not found Let x=qq (qq undefined)
9 variable undefined print qq

10 missing separator print at 5

11 name too long let thisverylongname=4

12 duplicate name create:n$:n$:endcreate

13 string Literal expected * (2)
14 missing endproc * (3)
15 bad proc statement * (3)
16 premature end of statement create'"test'":endcreate

17 program structure fault * (4)

18 too many numbers * 6)
50 missing closing quote let x$="fred

51 missing exponent after "E" let x=1.2E
52 number too big let x=1.2E100

53 unknown symbol let x=%
70 evaluator syntax error let x=3+
71 mismatched parenthesis let x=(3+5)/7)

73 type mismatch let x$="fred'"'+3

74 wrong number of arguments let x$=str(1,2)
75 string too long let x$=rept (''*"', 256)

76 divide by zero Let a=O: let x=5/a

77 bad function arguments let x$=sqr(-4)

78 string subscript error let x$="fred" (to 97)
80 out of memory * 6)
90 no room to open file * (7)
91 incomplete file transfer * (8)
93 out of range print at 100,100;37
94 file not open append (withoutfirst opening file)
100 cannot open file Look"xxx!'! (non-existent)

101 write to read only file look ''names'":insert
103 wrong file type sload''names'' (data file)

104 bad file name save''3test"!
105 error reading file * 9)

12/84

The mostlikely cause of error 5 — “wrong data type” — is that you have inputted
text when a number is expected, eg. in response to an input statement such
as:

input x

Error 13 — “string literal expected” — can occur, for example, during the import
of a file that you have constructed yourself (without using any of the export
commandsin the QL programs). It means that Archive has found a number, or
a numeric or text expression, where it was expecting to find a literal text value.
In most situations where Archive finds numeric data when expecting text, or vice

versa, it will give error 7 or error8.

Errors 14 — “missing endproc” — and 15 — “bad proc statement” — should never

occur in normal use. They indicate that Archive has detected a missing endproc
or an errorin the structure of a proc statement in a procedure. They are onlylikely
to occur if you construct a program file with an editor other than the one included

in Archive.

Error 17 — “program structure fault” — usually indicates that an all, if or while
is not paired with a corresponding endall, endif or endwhile in a procedure. You

Notes

53

Reference

can also generate this error by including an endproc inside another program
structure, or by using return directly from the keyboard.

Error 18 — “too many numbers” — indicates that you are trying to input more
numbersthanwill fit into the memory reserved for input. The error may occureither

in a line of input from the keyboard, or while loading a program that includes a
procedure with many numbers in oneofits lines. The exactlimit depends on
circumstances — a typicallimit would be 15 to 20 numbers, so you are unlikely
to get this error.

Error 80 — ‘out of memory” — should only be givenif you use a very large program
The size of an ordinary datafile is not limited by the amount of memory in the
computer since only part of a large file is in memory at any onetime. If Archive
gives you this error you will have to reduce the size of your program before
continuing. You can, if necessary, break your program into several sections, in
different files, and use mergeto load eachsection asit is needed. This technique
will, however, normally need a considerable amount of programmingskill.

Error 90 — “no room to open file’ — occurs whenthe area of memory Archive
reservesto store internal information aboutthefiles currently in memory becomes
full. This may happen evenif thereis still memoryavailable(i.if the value returned
by memory() is still not close to zero.)

Error 91 — “incompletefile transfer” — meansthat the loading or saving ofa file
has failed for some reason. This may mean that the data has been corrupted,
or that the cartridge or the Microdrive has been damaged.

Error 105 — ‘error reading file’ — means that some of the datain file is in the
wrong format, the wrong order, or has been corrupted. This is only likely to occur
if you construct your own import file — or your own program file without using
the Archive program editor (advanced uses).

12/84

