

ASSEMBLER
DEVELOPMENT
KIT FOR THE

QL

Assembler Development Kit for the QL. 2nd edition.

Copyright (C) 1985 Tenchstar Limited.
Metacomco is a trading division of Tenchstar Limited.

All rights reserved. No part of this work may be reproduced in any
form or by any means or used to make a derivative work (such as a
translation, transformation or adaptation) without permission in
writing from Tenchstar Limited, 26 Portland Square, Bristol,
England.

Although great care has gone into the preparation of this product,
neither Tenchstar Limited nor its distributors make any warranties
with respect to this product other than to guarantee the original
microdrive against faulty materials or workmanship for 90 days
after purchase.

QL, QDOS and SuperBasic are trademarks of Sinclair Research
Limited.

Assembler Development Kit for the QL. 3rd edition 2023
QL Community edition.

Preface

Metacomco's Assembler Development Kit for the QL is a
powerful package incorporating a full screen editor and a
macro assembler.

This book is intended to be a guide for users of the kit and
does not aim to be fully comprehensive on all related aspects
of the QL or assembler programming. It assumes that the
reader has knowledge of the QDOS operating system.

If further detailed information is required, a full
specification of the Motorola 68008 microprocessor can be
found in MC68000 16/32 Bit Microprocessor Programmer's
Reference Manual (4th edition, ISBN 1-356-6795X) published by
Prentice-Hall.

An introduction to assembler programming can be found in
various introductory texts such as Programming the M68000 by
Tim King and Brian Knight (ISBN 0-201-14635-5) published by
Addison-Wesley.

Further information about QDOS can be found in QL Advanced
User Guide by Adrian Dickens (ISBN 0-947929-00-2) published
by Adder Publishing.

Assembler Development Kit for the QL

CONTENTS

Chapter 1: The Screen Editor

1.1 Introduction
1.2 Immediate commands
1.3 Extended commands
1.4 Command list

Chapter 2: The Macro Assembler

2.1 Introduction
2.2 Running the Assembler
2.3 Program encoding
2.4 Expressions
2.5 Addressing modes
2.6 Directives
2.7 Example programs

Appendix A: The 68000 instruction set

Conditional tests

Appendix B: Installation

Changing the default window
Changing the default drive name
The INSTALL program

Appendix C: The Linker Program

Index

Assembler Development Kit for the QL Screen Editor

Chapter 1: The Screen Editor

1.1 Introduction

The screen editor ED may be used to create a new file or to alter an
existing one. The text is displayed on the screen, and can be
scrolled vertically or horizontally as required. The size of the
program is about 20K bytes and it requires a minimum workspace of 8K
bytes.

The editor is invoked using EXEC or EXEC_W as follows

EXEC_W mdv1_ed

The difference between invoking a program with EXEC or EXEC_W is as
follows. Using EXEC_W means that the editor is loaded and SuperBasic
waits until the editing is complete. Anything typed while the editor
is running is directed to the editor. When the editor finishes,
keyboard input is directed at SuperBasic once more.

Using EXEC is slightly more complicated but is more flexible. In this
case the editor is loaded into memory and is started, but SuperBasic
carries on running. Anything typed at the keyboard is directed to
SuperBasic unless the current window is changed. This is performed by
typing CTRL-C, which switches to another window. If just one copy of
ED is running then CTRL-C will switch to the editor window, and
characters typed at the keyboard will be directed to the editor. A
subsequent CTRL-C switches back to SuperBasic. When the editor is
terminated a CTRL-C will be needed to switch back to SuperBasic once
more. More than one version of the editor can be run concurrently
(subject to available memory) if EXEC is used. In this case CTRL-C
switches between SuperBasic and the two versions of the editor in
turn.

Once the program is loaded it will ask for a filename which should
conform to the standard QDOS filename syntax. No check is made on the
name used, but if it is invalid a message will be issued when an
attempt is made to write the file out, and a different file name may
be specified then if required. All subsequent questions have defaults
which are obtained by just pressing ENTER.

-1-

Assembler Development Kit for the QL Screen Editor

The next question asks for the workspace required. ED works by
loading the file to be edited into memory and sufficient workspace is
needed to hold all the file plus a small overhead. The default is 12K
bytes which is sufficient for small files. The amount can be
specified as a number or in units of 1024 bytes if the number is
terminated by the character K. If you ask for more memory than is
available then the question is asked again. The minimum is 8K bytes.

You are next asked if you wish to alter the window used by ED. The
default window is normally the same as the window used in the
initialisation of ED although this may be altered if required. See
Appendix B for details of how to do this. If you type N or just press
ENTER then the default window is used. If you type Y then you are
given a chance to alter the window. The current window is displayed
on the screen and the cursor keys can be used to move the window
around. The combination ALT and the cursor keys will alter the size
of the window although there is a minimum size which may be used.
Within this constraint you can specify a window anywhere on the
screen, so that you can edit a file and do something else such as run
a SuperBasic program concurrently. When you are satisfied with the
position of the window press ENTER.

Next, an attempt is made to open the file specified, and if this
succeeds then the file is read into storage and the first few lines
displayed on the screen. Otherwise a blank screen is provided, ready
for the addition of new data. The message "File too big" indicates
that more workspace should be specified.

When the editor is running the bottom line of the screen is used as a
message area and command line. Any error messages are displayed
there, and remain displayed until another editor command is given.

Editor commands fall into two categories - immediate commands and
extended commands. Immediate commands are those which are executed
immediately, and are specified by a single key or control key
combination. Extended commands are typed in onto the command line,
and are not executed until the command line is finished. A number of
extended commands may be typed on a single command line, and any
commands may be grouped together and groups repeated automatically.
Most immediate commands have a matching extended version.

-2-

Assembler Development Kit for the QL Screen Editor

Immediate commands use the function keys and cursor keys on the QL in
conjunction with the special keys SHIFT, CTRL and ALT. For example,
delete line is requested by holding down the CTRL and ALT keys and
then pressing the left arrow key. This is described in this document
as CTRL-ALT-LEFT. Function keys are described as F1, F2 etc.

The editor attempts to keep the screen up to date, but if a further
command is entered while it is attempting to redraw the display, the
command is executed at once and the display will be updated later,
when there is time. The current line is always displayed first, and
is always up to date.

-3-

Assembler Development Kit for the QL Screen Editor

1.2 Immediate commands

Cursor control

The cursor is moved one position in either direction by the cursor
control keys LEFT, RIGHT, UP an DOWN. If the cursor is on the edge of
the screen the text is scrolled to make the rest of the text visible.
Vertical scroll is carried out a line at a time, while horizontal
scroll is carried out ten characters at a time. The cursor cannot be
moved off the top or bottom of the file, or off the left hand edge of
the text.

The ALT-RIGHT combination will take the cursor to the right hand edge
of the current line, while ALT-LEFT moves it to the left hand edge of
the line. The text will be scrolled horizontally if required. In a
similar fashion SHIFT-UP places the cursor at the start of the first
line on the screen, and SHIFT-DOWN places it at the end of the last
line on the screen.

The combinations SHIFT-RIGHT and SHIFT-LEFT take the cursor to the
start of the next word or to the space following the previous word
respectively. The text will be scrolled vertically or horizontally as
required. The TAB key can also be used. If the cursor position is
beyond the end of the current line then TAB moves the cursor to the
next tab position, which is a multiple of the tab setting (initially
3). If the cursor is over some text then sufficient spaces are
inserted to align the cursor with the next tab position, with any
characters to the right of the cursor being shuffled to the right.

Inserting text

Any letter typed will be added to the text in the position indicated
by the cursor, unless the line is too long (there is a maximum of 255
characters in a line). Any characters to the right of the text will
be shuffled up to make room. If the line exceeds the size of the
screen the end of the line will disappear and will be redisplayed
when the text is scrolled horizontally. If the cursor has been placed
beyond the end of the line, for example by means of the TAB or cursor
control keys, then spaces are inserted between the end of the line
and any inserted character. Although the QL keyboard generates a
different code for SHIFT-SPACE and SHIFT-ENTER these are mapped to
normal space and ENTER characters for convenience.

-4-

Assembler Development Kit for the QL Screen Editor

An ENTER key causes the current line to be split at the position
indicated by the cursor, and a new line generated. If the cursor is
at the end of a line the effect is simply to create a new, empty
blank line after the current one. Alternatively CTRL-DOWN may be used
to generate a blank line after the current, with no split of the
current line taking place. In either case the cursor is placed on the
new line at the position indicated by the left margin (initially
column one).

A right margin may be set up (using the command SR) so that ENTERs
are automatically inserted before the preceding word when the length
of the line being typed exceeds that margin. In detail, if a
character is typed and the cursor is at the end of the line and at
the right margin position then an automatic newline is generated.
Unless the character typed was a space, the half completed word at
the end of the line is moved down to the newly generated line. (Note
that if a line has no spaces, i.e. it is completely full of
characters, the whole line of text is considered to be one 'word'
which is then moved down to a new line, leaving an empty line above).
Initially there is a right margin set up at the right hand edge of
the window used by ED. The right margin may be disabled by means of
the EX command (see later).

Deleting text

The CTRL-LEFT key combination deletes the character to the left of
the cursor and moves the cursor left one position. If the cursor is
at the start of a line then the newline between the current line and
the previous is deleted (unless you are on the very first line). The
text will be scrolled if required. CTRL-RIGHT deletes the character
at the current cursor position without moving the cursor. As with all
deletes, characters remaining on the line are shuffled down, and text
which was invisible beyond the right hand edge of the screen may now
become visible.

The combination SHIFT-CTRL-RIGHT may be used to delete a word or a
number of spaces. The action of this depends on the character at the
cursor. If this character is a space then all spaces up to the next
non-space character on the line are deleted. Otherwise characters are
deleted from the cursor, and text shuffled left, until a space is
found. The CTRL-ALT-RIGHT command deletes all characters from the
cursor to the end of the line. The CTRL-ALT-LEFT command deletes the
entire current line.

-5-

Assembler Development Kit for the QL Screen Editor

Scrolling

Besides the vertical scroll of one line obtained by moving the cursor
to the edge of the screen, the text may be scrolled 12 lines
vertically by means of the commands ALT-UP and ALT-DOWN. ALT-UP moves
to previous lines, moving the text window up; ALT-DOWN moves the text
window down moving to lines further on in the file. The F4 key
rewrites the entire screen, which is useful if the screen is altered
by another program besides the editor. Remember that you can switch
out of the editor window and into some other job by typing CTRL-C at
any point, assuming that there is another job with an outstanding
input request. SuperBasic will be available only if you entered the
editor using EXEC rather than EXEC_W. If there is enough room in
memory you can run two versions of ED at the same time if you wish.

Repeating commands

The editor remembers any extended command line typed, and this set of
extended commands may be executed again at any time by simply
pressing F2. Thus a search command could be set up as the extended
command, and executed in the normal way. [f the first occurrence
found was not the one required, typing F2 will cause the search to be
executed again. As most immediate commands have an extended version,
complex sets of editing commands can be set up and executed many
times. Note that if the extended command line contains repetition
counts then the relevant commands in that group will be executed many
times each time the F2 key is pressed.

-6-

Assembler Development Kit for the QL Screen Editor

1.3 Extended commands

Extended command mode is entered by pressing the F3 key. Subsequent
input will appear on the command line at the bottom of the screen.
Mistakes may be corrected by means of CTRL-LEFT and CTRL-RIGHT in the
normal way, while LEFT and RIGHT move the cursor over the command
line. The command line is terminated by pressing ENTER. After the
extended command has been executed the editor reverts to immediate
mode. Note that many extended commands can be given on a single
command line, but the maximum length of the command line is 255
characters. An empty command line is allowed, so just typing ENTER
after typing F3 will return to immediate mode.

Extended commands consist of one or two letters, with upper and lower
case regarded as the same. Multiple commands on the same command line
are separated from each other by a semicolon. Commands are sometimes
followed by an argument, such as a number or a string. A string is a
sequence of letters introduced and terminated by a delimiter, which
is any character besides letters, numbers, space, semicolon or
brackets. Thus valid strings might be:

/happy/ !23 feet! :Hello!: "1/2"

Most immediate commands have a corresponding extended version. See
the table of commands for full details (section 1.4).

Program control

The command X causes the editor to exit. The text held in storage is
written out to file, and the editor then terminates. The editor may
fail to write the file out either because the filename specified when
editing started was invalid, or because the microdrive becomes full.
In either case the editor remains running, and a new destination
should be specified by means of the SA command described below.
Alternatively the Q command terminates immediately without writing
the buffer; confirmation is requested in this case if any changes
have been made to the file. A further command allows a 'snapshot'
copy of the file to be made without coming out of ED. This is the SA
command. SA saves the text to a named file or, in the absence of a
named file, to the current file. For example:

*SA /mdv2_savedtext/

or

*SA

-7-

Assembler Development Kit for the QL Screen Editor

This command is particularly useful in areas subject to power failure
or surge. It should be noted that SA followed by Q is equivalent to
the X command. Any alterations made between the SA and the Q will
cause ED to request confirmation again; if no alterations have been
made the program. will be quitted immediately with the file saved in
that state. SA is also useful because it allows the user to specify a
filename other than the current one. It is therefore possible to make
copies at different stages and place them in different files.

The SA command is also useful in conjunction with the R command.
Typing R followed by a filename causes the editor to be re-entered
editing the new file. The old file will be lost when this happens, so
confirmation is requested (as with the Q command) if any changes to
the current file have been made. The normal action is therefore to
save the current file with SA, and then start editing a new file with
R. This saves having to load the editor into memory again, and means
that once the editor is loaded the microdrive containing it can be
replaced by another.

The U command "undoes" any alterations made to the current line if
possible. When the cursor is moved from one line to another, the
editor takes a copy of the new line before making any changes to it.
The U command causes the copy to be restored. However the old copy is
discarded and a new one made in a number of circumstances. These are
when the cursor is moved off the current line, or when scrolling in a
horizontal or vertical direction is performed, or when any extended
command which alters the current line is used. Thus U will not "undo"
a delete line or insert line command, because the cursor has been
moved off the current line.

The SH command shows the current state of the editor. Information
such as the value of tab stops, current margins, block marks and the
name of the file being edited is displayed. Tabs are initially set at
every three columns; this can be changed by the command ST, followed
by a number n, which sets tabs at every n columns. The left margin
and right margin can be set and reset by SL and SR commands, again
followed by a number indicating the column position. The left margin
should not be set beyond the width of the screen. The EX command may
be used to extend margins; once this command is given no account will
be taken of the right margin on the current line. Once the cursor is
moved off the current line, margins are enabled once more. To extend
more than just the current line, use the SR command. The right hand
margin may be set beyond the width of the window or screen. The
maximum width is 255. (See also 1.2 "Inserting text").

-8-

Assembler Development Kit for the QL Screen Editor

Block control

A block of text can be identified by means of the BS (block start)
and BE (block end) commands. The cursor should be moved to the first
line required in a block, and the BS command given. The cursor can
then be moved to the last line wanted in the block, by cursor control
commands or in any other way, such as searching. The BE command is
then used to mark the end of the block. Note, however, that if any
change is made to the text the block start and block end become
undefined once more. The start of the block must be on the same line,
or a line previous to, the line which marks the end of the block. A
block always contains all of the line(s) within it.

Once a block has been identified, a copy of it may be moved into
another part of the file by means of the IB (insert block) command.
The previously identified block is replicated immediately after the
current line. Alternatively a block may be deleted by means of the DB
command, after which the block start and end values are undefined. It
is not possible to insert a block within itself.

Block marks may also be used to remember a place in a file. The SB
(show block) command resets the screen window on the file so that the
first line in the block is at the top of the screen.

A block may also be written to a file by means of the WB command. The
command is followed by a string which represents a file name. The
file is created, possibly destroying the previous contents, and the
buffer written to it. A file may be inserted by the IF command. The
filename given as the argument string is read into storage
immediately following the current line.

Movement

The command T moves the screen to the top of the file, so that the
first line in the file is the first line on the screen. The B command
moves the screen to the bottom of the file, so that the last line in
the file is the bottom line on the screen if possible.

The commands N and P move the cursor to the start of the next line
and previous line respectively. The commands CL and CR move the
cursor one place to the left or one place to the right, while CE
places the cursor at the end of the current line, and CS places it at
the start.

-9-

Assembler Development Kit for the QL Screen Editor

It is common for programs such as compilers and assemblers to give
line numbers to indicate where an error has been detected. For this
reason the command M is provided, which is followed by a number
representing the line number which is to be located. The cursor will
be placed on the line number in question. Thus M1 is the same as the
T command. If the line number specified is too large the cursor will
be placed at the end of the file.

Searching and Exchanging

Alternatively the screen window may be moved to a particular context.
The command F is followed by a string which represents the text to be
located. The search starts at one place beyond the current cursor
position and continues forwards through the file. If found, the
cursor is placed at the start of the located string. To search
backwards through the text use the command BF (backwards find) in the
same way as F. BF will find the last occurrence of the string before
the current cursor position. To find the earliest occurrence use T
followed by F; to find the last, use B followed by BF. The string
after F and BF can be omitted; in this case the string specified in
the last F, BF or E command is used. Thus:

*F /wombat/

*BF

will search for 'wombat' in a forwards direction and then in a
reverse direction.

The E (exchange) command takes a string followed by further text and
a further delimiter character, and causes the first string to be
exchanged to the last. So for example:

E /wombat/zebra/

would cause the letters 'wombat' to be changed to 'zebra'. The editor
will start searching for the first string at the current cursor
position, and continues through the file. After the exchange is done
the cursor is moved to after the exchanged text. An empty string is
allowed as the search string, specified by two delimiters with
nothing between them. In this case the second string is inserted at
the current cursor position. No account is taken of margin settings
while exchanging text.

-10-

Assembler Development Kit for the QL Screen Editor

A variant on the E command is the EQ command. This queries the user
whether the exchange should take place before it happens. If the
response is N then the cursor is moved past the search string. If the
response is Y or ENTER then the change takes place; any other
response (except F2) will cause the command to be abandoned. This
command is normally only useful in repeated groups; a response such
as Q can be used to exit from an infinite repetition.

All of these commands normally perform the search making a
distinction between upper and lower case. The command UC may be given
which causes all subsequent searches to be made with cases equated.
Once this command has been given then the search string "wombat" will
match "Wombat", "WOMBAT", "WoMbAt" and so on. The distinction can be
enabled again by the command LC.

Altering text

The E command cannot be used to insert a newline into the text, but
the I and A commands may be used instead. The I command is followed
by a string which is inserted as a complete line before the current
line. The A command is also followed by a string, which is inserted
after the current line. It is possible to add control characters into
a file in this way.

The S command splits the current line at the cursor position, and
acts just as though an ENTER had been typed in immediate mode. The J
command joins the next line onto the end of the current one.

The D command deletes the current line in the same way as the CTRL-
ALT-LEFT command in immediate mode, while the DC command deletes the
character at the cursor in the same way as CTRL-RIGHT.

Repeating commands

Any command may be repeated by preceding it with a number. For
example:

4 E /slithy/brillig/

will change the next four occurrences of 'slithy' to 'brillig'. The
screen is verified after each command. The RP (repeat) command can be
used to repeat a command until an error is reported, such as reaching
the end of the file. For example,

RP E /slithy/brillig/

will change all occurrences of 'slithy' to 'brillig'.

-11-

Assembler Development Kit for the QL Screen Editor

Commands may be grouped together with brackets and these command
groups executed repeatedly. Command groups may contain further nested
command groups. For example:

RP (F /bandersnatch/; 3 (IB; N))

will insert three copies of the current block whenever the string
'bandersnatch' is located.

Note that some commands are possible, but silly. For example:

RP SR 60

will set the right margin to 60 ad infinitum. However, any sequence
of extended commands, and particularly repeated ones, can be
interrupted by typing any character while they are taking place.
Command sequences are also abandoned if an error occurs.

-12-

Assembler Development Kit for the QL Screen Editor

1.4 Command list

In the extended command list, /s/ indicates a string, /s/t/ indicates
two exchange strings and n indicates a number.

Immediate commands

F2 Repeat last extended command
F3 Enter extended mode
F4 Redraw screen
LEFT Move cursor left
SHIFT-LEFT Move cursor to previous word
ALT-LEFT Move cursor to start of line
CTRL-LEFT Delete left one character
CTRL-ALT-LEFT Delete line
RIGHT Move cursor right
SHIFT-RIGHT Move cursor to start of next word
ALT-RIGHT Move cursor to end of line
CTRL-RIGHT Delete right one character
CTRL-ALT-RIGHT Delete to end of line
SHIFT-CTRL-RIGHT Delete word to right
UP Move cursor up
SHIFT-UP Cursor to top of screen
ALT-UP Scroll up
DOWN Move cursor down
SHIFT-DOWN Cursor to bottom of screen
ALT-DOWN Scroll down
CTRL-DOWN Insert blank line

-13-

Assembler Development Kit for the QL Screen Editor

Extended Commands

A/s/ Insert line after current
B Move to bottom of file
BE Block end at cursor
BF Backwards find
BS Block start at cursor
CE Move cursor to end of line
CL Move cursor one position left
CR Move cursor one position right
CS Move cursor to start of line
D Delete current line
DB Delete block
DC Delete character at cursor
E /s/t/ Exchange s into t
EQ /s/t/ Exchange but query first
EX Extend right margin
F /s/ Find string s
I/s/ Insert line before current
IB Insert copy of block
IF /s/ Insert files
J Join current line with next
LC Distinguish between upper and lower case in searches
Mn Move to line
N Move cursor to start of next line
P Move cursor to start of previous
Q Quit without saving text
R/s/ Re-enter editor with file s
RP Repeat until error
S Split line at cursor
SA/s/ Save text to file s
SB Show block on screen
SH Show information
SL n Set left margin
SR n Set right margin
ST n Set tab distance
T Move to top of file
U Undo changes on current line
UC Equate U/C and l/c in searches
WB /s/ Write block to files
X Exit, writing text back

-14-

Assembler Development Kit for the QL Macro Assembler

Chapter 2: The Macro Assembler

2.1 Introduction

The Sinclair QL contains a Motorola 68008 microprocessor which was
designed to supersede the MC6800 and MC6809 processors. It is a byte-
addressed machine with a 20 bit address bus, giving it an address
space of 1 megabyte. It has at any one time 16 32-bit registers, 8 of
which are specialised for arithmetic type operations (data registers,
named D0-D7), and the other 8 of which are specialised for addressing
operations (address registers, named A0 - A7). A7 (synonymous to SP)
is designated as the Stack Pointer.

It has two operating states (User and System), the second of which is
privileged, and has its own, separate stack pointer. This means that
there are in fact 9 address registers, only 8 of which are visible at
any one time. In addition to the general purpose registers, there is
a 24-bit Program Counter (PC), and a 16-bit Status Register (SR)
incorporating the 8-bit Condition Code register (CCR).

Like the MC6809, the MC68008 has a large collection of addressing
modes, and addresses are specified by using one of the 12 Effective
Address types, the assembler code syntax of which is described later.
The MC68008 is capable of performing 8, 16 and 32 bit arithmetic, and
most instructions have a size qualifier, specifying the size of the
operation to be performed.

-15-

Assembler Development Kit for the QL Macro Assembler

2.2 Running the Assembler

The assembler consists of three overlays, and will normally require
most of the available memory of an unexpanded QL. Thus it is not
possible to run the assembler with a large SuperBasic program or the
editor in memory unless the QL has expansion RAM fitted. It may be
possible to load the first assembler overlay with little spare RAM,
but the assembler will not be able to load the second (and largest)
overlay in this case. It is run using the EXEC or EXEC_W command as
follows:

EXEC_W mdv1_asm

See the description of the editor for a fuller discussion of the
difference between EXEC and EXEC_W. Once the program has loaded it
will ask for the name of the source file. This file should contain a
suitable assembly language program. This will consist of a mixture of
instruction opcodes and directives, symbolic names and labels,
operators and other special symbols. This file must be provided and
must exist. Note that the assembler will require access to the
microdrive from which it was loaded whilst it runs, so the normal
course of action is to keep the source on one microdrive and the
assembler on another. The assembler can be loaded from either drive.

The assembler then proceeds to ask a number of further questions, all
of which have a default value which is used if just ENTER is pressed.
The first of these is to determine whether an assembly listing is
required, and if so where it is to be produced. The initial question
asks if a listing is needed; the default is N which means that no
listing will be produced. In this case if any error is detected the
line in error and the error message will be displayed in the window.
If the reply is Y then a further question is asked concerning the
destination for the listing. The default is to produce the listing on
the screen, and if ENTER is pressed then this is assumed. When the
listing is produced on the screen, then no page headings are printed.
If a file name is specified then this will be used. The file may
refer to a microdrive file or to a serial line device such as ser1 to
which a printer is connected. In this case page headings are produced
at the top of each page, and directives such as PAGE (see below) will
cause a page throw. Note that in order to copy a listing saved on
microdrive to a printer COPY_N rather than just COPY should be used.

-16-

Assembler Development Kit for the QL Macro Assembler

Assembly listings contain all the lines in the input file which are
not disabled from being printed by either a NOLIST directive or
because the line contains a directive which is not echoed. The output
provides the address or relative offset followed by the code
generated. This is followed by a space or an E if the line is in
error. The line number and the reflection of the input text makes up
the rest of the line. If the line is the result of a macro expansion
then the line number will be followed by a plus sign ('+'). If there
are any errors then a new page is given at the end of the listing
detailing the error, with a full English error message and a
reference to the line number.

The next question concerns the code file. This will contain the
object code produced by the assembler. The default is that no code
output is required, so none will be produced; this is useful if a
simple check on the syntax of a program is required, or perhaps just
an assembly listing is needed. If a file name is given then an
attempt is made to open it, and the question is asked again if this
fails.

The assembler then asks for the workspace required. The amount can be
specified as a number or in units of 1024 bytes if the number is
terminated by the character K. A reply of ENTER means that the
default of 24K bytes is used.

The final stage is to determine whether the window used by the
assembler is to be changed. The reply ENTER or N means that the
default window is to be used. The default window is normally the same
as the initial window, but this may be changed. See Appendix B for
details. If Y is typed then the window is cleared and it may be moved
or changed in size by means of the cursor keys. The cursor keys by
themselves move the window, while ALT pressed in conjunction with the
cursor keys will alter the window size. Once the window is suitably
defined, ENTER will proceed with the assembly.

The output file may be in one of four different formats, depending on
the assembler program. The formats may not be mixed. The first format
is position independent code. In this case the output will be binary
code which can be loaded anywhere in memory. In order to produce code
which can be EXECed the file must be position independent, as there
is no way to determine where in memory the code will be loaded. It is
normally good style to write programs as position independent if at
all possible. Code will be produced as position independent if ORG is
not specified and if no relocation information is generated.

The second case is relocatable code. This is produced when ORG has
not been specified but when relocation information is generated.

-17-

Assembler Development Kit for the QL Macro Assembler

Relocation information is produced when a reference is made to a
label which cannot be computed while the assembler is running, but
which will only be known when the program is loaded. For example:

DC.L FRED

FRED BSR.S MARY

In this case the value of the label FRED cannot be specified relative
to the program counter as MARY is, and the address represented by
FRED will not be known until the program is loaded into memory. The
reference to FRED requires relocation. This is performed by the
assembler in the following fashion. The output file is produced in a
special format which contains the code and the relocation
information. This is preceded by a small section of code (a
relocator) produced automatically from the assembler. When the code
is run execution will start at the first instruction, which is part
of the relocator. The relocator will use the relocation information
to modify the program so the reference to FRED above does indeed
refer to the instruction required. Once all such relocation
information is dealt with, the first instruction of the user's code
is jumped to. The effect of this is that relocatable code should
execute as expected, but if the path of the code is traced with a
debugger then the relocator will be seen to run before the main user
program. Relocatable code can be run via EXEC or CALL.

The assembler can also produce code in absolute format. Absolute code
will only run in one region of memory and will not work anywhere
else. It is specified by using the ORG directive which is followed by
a reference to the first location to be used. For example, space
might be allocated via the RESPR SuperBasic command, and a note taken
of the value returned. The program could then be assembled using the
base of the resident area as the argument to the ORG directive. The
resulting absolute code should be loaded into the resident area via
LBYTES and CALLed. The program may not be EXECed and will not run at
any other location. If possible absolute format should be avoided
because of these restrictions. The two previous formats may be CALLed
or EXECed and are hence much more flexible.

-18-

Assembler Development Kit for the QL Macro Assembler

The final format is used if any external names are used, either as an
external reference or an external definition. These will be used to
link sections of code written in assembler or in high level
languages. The output is not directly executable but must be passed
through a linker to be combined with other code sections. This format
is produced if XDEF or XREF are used.

The assembler is a two pass assembler, reading the source text twice,
firstly to construct a symbol table and macro definitions, and
secondly, to produce a source listing and object module.

Finally, once the assembler has finished, it asks More files to
assemble [Y/N] ?

If Y is replied, the whole series of questions at the beginning of
this section is repeated. A reply of N ends assembly and takes the
user out of the assembler. There is no default, i.e. a reply of ENTER
leads to the question being repeated until Y or N is given. However,
if the last assembly fails from a fatal error, the question is not
asked. The assembler will not continue after a fatal error.

-19-

Assembler Development Kit for the QL Macro Assembler

2.3 Program encoding

A program acceptable to the assembler takes the form of a series of
input lines that are:

a) Comment or Blank lines
b) Executable Instructions
c) Assembler Directives

Comments

Comments are introduced into the program in one of two ways. If the
first character on the line is an asterisk ("*"), then the whole line
is treated as comment. Also, text after an instruction or assembler
directive is treated as comment, provided it is preceded by at least
one blank character. Blank lines are also treated as comments by the
assembler.

Examples of Comments:

* This entire line is a comment

FRED MOVEQ.L #10,D0 Comment following instruction

PAGE Move to the top of a new page

Executable Instructions

The specification of the executable instructions is given in full in
the references provided in the preface and is not covered here. The
source statements have the general overall format:

[LABEL] OPCODE [OPERAND(s)] [COMMENT]

each field being separated from the next by at least one blank
character.

Label Field

A label is a user symbol which either

a) Starts in the first column, terminated by at least one blank
character or a newline, or

b) Starts in any column, and is terminated with a colon (":").

-20-

Assembler Development Kit for the QL Macro Assembler

If a label is present, then it must be the first non-blank item on
the line. The label is assigned the value and type of the program
counter, i.e. the memory address of the first byte of the instruction
or data being referenced. Labels are allowed on all instructions, and
some directives. See the specification of individual directives for
whether a label field is allowed. Opcodes which are uses of a macro
may not have a label field, although the same effect is obtained by
placing the label by itself on the line before.

N.B. Labels must not be Instruction names, Directives or Register
names, and must not be multiply defined.

Opcode Field

The Opcode field follows the Label field, and is separated from it by
at least one blank character. Entries in this field are of two types.
Firstly, the MC68000 operation codes, as defined in the MC68000 User
Manual, and secondly, Assembler Directives. For instructions and
directives which can operate on more than one data size, there is an
optional Size-Specifier subfield, which is separated from the opcode
by the period (".") character. Possible size specifiers are:

B - Byte sized data (8 bits)
W - Word sized data (16 bits)
L - Long Word sized data (32 bits)

or Long Branch specifier
S - Short Branch specifier

The size specifier must match with the instruction or directive type
being used.

Operand Field

If present, this field contains the one or more operands to the
instruction or directive, and must be separated from it by at least
one blank character, Where two or more operands occur in this field,
they must be separated by the comma character (","). The operand
field is terminated by the blank or newline characters, so no blank
characters are allowed in this field.

Comment Field

If present, anything after the terminating blank character of the
operand field is ignored, and hence can be treated as comment.

-21-

Assembler Development Kit for the QL Macro Assembler

2.4 Expressions

An expression is a combination of symbols, constants, algebraic
operators and parentheses, and can be used to specify the operand
field to instructions or directives. Relative symbols may be included
in expressions, but they can only be operated on by a subset of the
operators.

Operators

The operators available, in decreasing order of precedence are:

a) Monadic Minus ("-")
b) Lshift, Rshift ("<<" and ">>")
c) And, Or ("&" and "!")
d) Multiply, Divide ("*" and "/")
e) Add, Subtract ("+" and "-")

The precedence of the operators can be over-ridden by enclosing sub-
expressions in parentheses. Operators of equal precedence are
evaluated from left to right. Note that there should not normally be
any spaces in an expression, as the space will be regarded as a
delimiter between one field and another.

Operand Types for Operators

In the following table, absolute symbols are represented by "A", and
relative symbols by "R". The possible operator/operand combinations
are shown, with the type of the resulting value. "x" indicates an
error. The Monadic minus operator is only valid with an absolute
operand.

-22-

Assembler Development Kit for the QL Macro Assembler

Operators
Operands

A op A R op R A op R R op A

+ A x R R

- A A x R

* A x x x

/ A x x x

& A x x x

! A x x x

>> A x x x

<< A x x x

Symbols

A symbol is a string of characters, the first of which must be
alphabetic ("A"-"Z"), "@", or period (".") and the rest of which can
be any of these characters or also numeric ("0"-"9") or the underline
character ("_"). In all symbols, the lower case characters ("a"-"z")
are treated as synonymous with their upper case equivalents. Symbols
can be up to 30 characters in length, all of which are significant.
The assembler will take symbols longer than this, and truncate them
to 30 characters, giving a warning that it has done so. The
Instruction names, Directive names, Register names, and special
symbols CCR, SR, SP and USP cannot be used as user symbols. A symbol
can have one of three types:

Absolute

a) The symbol was SET or EQUated to an Absolute
value

b) An ORG statement preceded the definition of the
symbol

-23-

Assembler Development Kit for the QL Macro Assembler

Relative

a) The symbol was SET or EQUated to a Relative value

b) A RORG statement preceded the definition of the
symbol

c) Neither ORG nor RORG was used (Default is RORG $0)

Register

a) The symbol was set to a register name using EQUR
(This is an extension from the MOTOROLA
specification).

There is a special symbol "*", which has the value and type of the
current program counter, i.e. the address of the current instruction
or directive being dealt with.

Numbers

A number may be used as a term of an expression, or as a single
value. Numbers ALWAYS have absolute values, and can take one of the
following formats:

Decimal (a string of decimal digits)

Example: 1234

Hexadecimal ("$" followed by a string of hex digits)

Example: $89AB

Binary ("%" followed by zeros and ones)

Example: %10110111

ASCII Literal (Up to 4 ASCII characters within quotes)

Examples: 'ABCD' '*' 'Ian''s'

Strings of less than 4 characters are justified to the right, with
NUL being used as the packing character. To obtain a quote character
in the string, two quotes must be used.

-24-

Assembler Development Kit for the QL Macro Assembler

2.5 Addressing modes

The effective address modes define the operands to instructions and
directives, and there is a detailed description of them in the
references above. Addresses refer to individual bytes, but
instructions, Word and Long Word references access more than one
byte, and the address for these must be word aligned.

In the following table, "Dn" represents one of the data registers
(D0-D7), "An" represents one of the address registers (A0-A7 and SP),
"a" represents an absolute expression, "r" represents a relative
expression, and "Xn" represents An or Dn, with an optional ".W" or
".L" size specifier. The syntax for each of the modes is as follows:

Address Mode Description and Examples

Dn Data Register Direct
e.g. MOVE D0,D1

An Address Register Direct
e.g. MOVEA A0,AL

(An) Address Register Indirect,
e.g. MOVE D0,(A1)

(An)+ Address Register Indirect Post Increment
e.g. MOVE (A7)+,D0

-(An) Address Register Indirect Pre Decrement
e.g. MOVE DO,-(A7)

a(An) Address Register Indirect with Displacement
e.g. MOVE 20(A0),D1

a(An,Xn) Address Register Indirect with Index
e.g. MOVE 0(A0,D0),D1

MOVE 12(A1,A0.L),D2
MOVE 120(A0,D3.W),D4

-25-

Assembler Development Kit for the QL Macro Assembler

Address Mode Description and Examples

a Short absolute (16 bits)
e.g. MOVE $1000,D0

a Long absolute (32 bits)
e.g. MOVE $10000,D0

r Program Counter Relative with Displacement
e.g. MOVE ABC,DO (ABC is relative)

r(Xn) Program Counter Relative with Index
e.g. MOVE ABC(D0.L),D1 (ABC is relative)

#a Immediate data
e.g. MOVE #1234,D0

USP)
CCR)- Special addressing modes
SR)

e.g. MOVE A0,USP
MOVE D0,CCR
MOVE D1,SR

-26-

Assembler Development Kit for the QL Macro Assembler

2.6 Directives

All assembler directives (with the exception of DC) are instructions
to the assembler, rather than instructions to be translated into
object code. They are first listed by function, and then described
individually.

Note that labels are only allowed on directives where shown. For
example, EQU is allowed a label, it is optional for ORG but not
allowed for LLEN or TTL.

Assembly Control

ORG Absolute origin
RORG Relocatable origin
SIZE Size of data area
END Program end

Symbol Definition
EQU Assign permanent value
EQUR Assign permanent register value
SET Assign temporary value

Data Definition

DC Define constants
DS Define storage

Listing Control

PAGE Page-throw to listing
LIST Enable listing

NOLIST (NOL) Disable listing
SPC n Skip n blank lines
NOPAGE Disable paging
LLEN n Set line length (60 <= n <= 132)
PLEN n Set page length (24 <= n <= 100)
TTL Set program title (max 40 chars)

NOOBJ Disable object code output
FAIL Generate an assembly error

-27-

Assembler Development Kit for the QL Macro Assembler

Conditional Assembly

CNOP Conditional NOP for alignment
IFEQ Assemble if equal
IFNE Assemble if not equal
ENDC End of conditional assembly

Macro Directives

MACRO Define a macro name
ENDM End of macro definition
MEXIT Exit the macro expansion

External Symbols

XDEF Define external name
XREF Reference external name

General Directives

GET "<file>" Insert file in the source

Assembly Control

ORG Set Absolute Origin

Format: [label] ORG absexp

The ORG directive changes the program counter to the value specified
by the absolute expression in the operand field. Subsequent
statements are assigned absolute memory locations, starting with the
new program counter value. The optional symbol "label" will be
assigned the value of the program counter AFTER the ORG directive has
been obeyed.

-28-

Assembler Development Kit for the QL Macro Assembler

RORG Set Relative Origin

Format: [label] RORG absexp

The RORG directive changes the program counter to be of relocatable
type, and to have the value given by "absexp". Subsequent statements
will be assigned relocatable memory locations, starting with the
value assigned to the program counter. Addressing in relocatable
sections is done using the "program counter relative with
displacement" addressing mode.

If neither an ORG nor a RORG directive is specified, relative mode is
assumed, and the program counter will start as if a "RORG 0" were
present. Assembler modules which are to run via EXEC must be
relocatable, so this default value is normally correct. The label
value assignment is the same as for ORG.

SIZE Size of data area

Format: SIZE number

The SIZE directive tells the assembler the size of the data area to
write into the code file, and which will hence be allocated to you
when the job is run via EXEC. A job initiated in this way will be
started with register A6 pointing to the base of the code, (A6,A4.L)
will point to the base of the data area and (A6,A5.L) will point to
the end of the data area. The stack pointer will normally run down
from the top of the area towards the bottom; any other space can be
allocated from the bottom upwards. Jobs should normally make use of
the data area for memory storage by setting up suitable offsets on
(A6,A4.L) or some other register initialised to this value. The
default size of the data area if the SIZE directive is not given is
500 bytes. The number specified after the SIZE directive is the new
value specified in bytes.

-29-

Assembler Development Kit for the QL Macro Assembler

END End of program

Format: [label] END

The END directive tells the assembler that the source is finished,
and subsequent source statements are ignored. The END directive
encountered during the first pass of the assembler causes it to begin
the second pass. If the end of file is detected before an END
directive a warning message is given. If the label field is present,
then the value of the current program counter is assigned to the
label, before the END directive is executed.

Symbol Definition

EQU Equate symbol value

Format: label EQU exp

The EQU directive assigns the value of the expression in the operand
field to the symbol in the label field. The value assigned is
permanent, so the label may not be defined anywhere else in the
program. The expression must not contain forward references.

EQUR Equate register value

Format: label EQUR register

This directive allows the user to equate one of the processor
registers with a user symbol. Only the Address and Data registers are
valid, so special symbols like SR, CCR and USP are illegal here. The
register assigned is permanent, so the label cannot be defined
anywhere else in the program. The register must not be a forward
reference to another EQUR statement.

-30-

Assembler Development Kit for the QL Macro Assembler

SET Set symbol value

Format: label SET exp

The SET directive assigns the value of the expression in the operand
field to the symbol in the label field. SET is identical to EQU,
apart from the fact that the assignment is temporary, and can be
changed later on in the program. The expression cannot contain
forward references, and no forward references are allowed to symbols
which are defined using SET.

Data Definition

DC Define Constant

Format: [label] DC.B list
[label] DC.W list
[label] DC.L list

The DC directive defines a constant value in memory. It may have any
number of operands, separated by commas (","). The values in the list
must be capable of being held in the data location whose size is
given by the size specifier on the directive. If no size specifier is
given, a default of ".W" is assumed. If the size is ".B", then there
is one other data type which can be used: that of the ASCII string.
This is an arbitrarily long series of ASCII characters, contained
within quotation marks. As with ASCII literals, if a quotation mark
is required in the string, then two must be entered. If the size is
".W" or ".L", then the assembler aligns the data onto a word
boundary.

-31-

Assembler Development Kit for the QL Macro Assembler

DS Define Storage

Format: [label] DS.B absexp
[label] DS.W absexp
[label] DS.L absexp

The DS directive is used to reserve memory locations, but does not
initialise them in any way. The amount of space allocated depends on
the data size (given by the size specifier on the directive), and the
value of the expression in the operand field. This is interpreted as
the number of data items of that size to allocate. As with DC, if the
size specifier is ".W" or ".L", the space is aligned onto a word
boundary; thus "DS.W 0" will have the effect of aligning to a word
boundary only. See CNOP for a more general way of handling alignment.
If no size specifier is given, a default of ".W" is assumed.

Listing Control

PAGE Page Throw

Format: PAGE

Unless paging has been inhibited, advance the assembly listing to the
top of the next page. The PAGE directive does not appear on the
output listing.

-32-

Assembler Development Kit for the QL Macro Assembler

LIST Enable Listing

Format: LIST

The LIST directive enables the production of the assembly listing
file. Listing continues until either an END or a NOLIST directive is
encountered. This directive is only active if a listing file is being
produced. The LIST directive does not appear on the output listing.

NOLIST Disable Listing

Format: NOLIST
NOL

The NOLIST directive (for which NOL is a synonym), disables
production of the assembly listing file. Listing ceases until either
an END or a LIST directive is encountered. The NOLIST directive does
not appear on the program listing.

SPC Space Blank Lines

Format: SPC number

The SPC directive outputs the number of blank lines given by the
operand field, to the assembly listing. The SPC directive does not
appear on the program listing.

NOPAGE Disable Paging

Format: NOPAGE

The NOPAGE directive disables the printing of page throws and title
headers on the assembly listing. It is on by default if listing is to
a file or device, and off by default if the listing is to the screen.

-33-

Assembler Development Kit for the QL Macro Assembler

LLEN Set Line Length

Format: LLEN number

The LLEN directive sets the line length of the assembly listing file,
to the value given in the operand field. The value must lie between
60 and 132, and can only be set once in the program. The LLEN
directive is not listed. The default is 132.

PLEN Set Page Length

Format: PLEN number

The PLEN directive sets the page length of the assembly listing file,
to the value given in the operand field. The value must lie between
24 and 100, and can only be set once in the program. The default is
60.

TTL Set Program Title

Format: TTL title string

The TTL directive sets the title of the program to the string given
in the operand field. This string is used as the page heading in the
assembly listing. The string starts at the first non-blank character
after the TTL, and continues until the end of line. It must not be
longer than 40 characters in length. The TTL directive does not
appear on the program listing.

-34-

Assembler Development Kit for the QL Macro Assembler

NOOBJ Disable Object Code Generation

Format: NOOBJ

The NOOB directive disables the production of the object code file at
the end of assembly. This directive disables the production of the
code file even if a file name was specified when the assembler was
started.

FAIL Generate a user error

Format: FAIL

The FALL directive causes the assembler to flag an error for this
input line.

Conditional Assembly

CNOP Conditional NOP

Format: [label] CNOP number, number

This directive is an extension from the Motorola standard and allows
a section of code to be aligned on any boundary. In particular, it
allows any data structure or entry point to be aligned to a long word
boundary.

The first expression represents an offset, while the second
expression represents the alignment required for the base. The code
is aligned to the specified offset from the nearest required
alignment boundary. Thus

CNOP. 0,4

will align code to the next long word boundary while

CNOP 2,4

will align code to the word boundary 2 bytes beyond the nearest long
word aligned boundary.

-35-

Assembler Development Kit for the QL Macro Assembler

IFEQ Assemble if Equal
IFNE Assemble if Not Equal

Format: IFEQ absexp
IFNE absexp

The IFEQ and IFNE directives are used to enable or disable assembly,
depending on the value of the expression in the operand field. The
value is assumed to be EQUAL if it is zero, and NOT EQUAL otherwise.
Thus the assembly is disabled if the operand is non zero for IFEQ, or
zero for IFNE. The conditional assembly switch remains active until a
matching ENDC statement is found. Conditional assembly switches can
be nested arbitrarily, and each level of nesting must be terminated
by a matching ENDC.

ENDC End conditional assembly

Format: ENDC

The ENDC directive is used to terminate conditional assembly, set up
using the IFEQ and IFNE directives. ENDC matches the most recently
encountered IFEQ or IFNE.

-36-

Assembler Development Kit for the QL Macro Assembler

Macro Directives

MACRO Start a macro definition

Format: label MACRO

This introduces a macro definition, which is terminated by ENDM. The
macro is given the name of the label, and subsequent uses of that
label as an operand will cause the contents of the macro to be
expanded and inserted into the source code. A macro can contain any
opcode, most assembler directives or any previously defined macro.
When a macro label is used as an operand it may not have a label
field on the same line, although an otherwise blank line containing a
label may be placed before the line to get the required effect. Code
generated by macro expansion is marked with a '+'sign in the
listing. When a macro name is used it may be followed by a number of
arguments, separated by commas. If the argument is to contain a space
(for example, a string containing a space) then the entire argument
must be enclosed by '<' (less than) and '>' (greater than) symbols.

The source code entered after a MACRO directive and before an ENDM
directive is stored up and saved as the contents of the macro. The
code can contain any normal source code; in addition the symbol '\'
(backslash) has a special meaning. Backslash followed by a number n
indicates that the value of the nth argument is to be inserted into
the code. If the nth argument is omitted then nothing is inserted.
Backslash followed by the symbol '@' will cause the text '@nnn' to be
generated, where nnn is the number of times the \@ combination has
been encountered. This is normally used to generate unique labels
within a macro.

Macro definitions may not be nested, i.e. a macro cannot be defined
within a macro, although a previously defined macro may be called.
There is a limit to the level of nesting of macro calls which is
currently set at ten.

Macro expansion stops when the end of the stored macro text is
encountered, or when an MEXIT directive is found (see below).

-37-

Assembler Development Kit for the QL Macro Assembler

ENDM Terminate a macro definition

Format: ENDM

This terminates a macro definition introduced by a MACRO directive.

MEXIT Exit from macro expansion

Format: MEXIT

This directive is used to exit from macro expansion mode. It is
normally used in conjunction with the IFEQ and IFNE directives, and
allows conditional expansion of macros. Once the directive is
executed, the assembler stops expanding the current macro as though
there was no more stored text to include.

External Symbols

XDEF Define an internal label as an external entry point

Format: XDEF label [,label]

One or more labels may follow the XDEF directive; they may be
absolute or relocatable but the name must be less than 8 characters.
Each label defined here will generate an external symbol definition.
References to the symbol can be made in other modules (possibly from
a high level language) and the references satisfied by a linker. If
this directive or the next is used then the code produced by the
assembler is not directly executable.

-38-

Assembler Development Kit for the QL Macro Assembler

XREF Define an external name

Format: XREF label [,label]

One or more labels which must not have been defined elsewhere in the
program follow the XREF directive. Subsequent uses of the label must
be at locations aligned to a word boundary and will cause an external
reference to be generated for that label. The label will be used as
if it referred to an absolute value, and the actual value used will
be filled in from another module by the linker. The value may only be
used where a 32 bit or 16 bit value would be valid. The linker will
also generate any relocation information that may be required in
order for the resulting code to be relocatable.

External symbols are normally used as follows. A routine in one
program segment is specified as an external definition by placing a
label at the start of the routine and quoting the label after an XDEF
directive. Another program may call that routine by declaring a label
via the XREF directive and then jumping to the label so declared.
Data areas may be accessed in the same way so long as the values are
either 32 or 16 bits.

General Directives

GET Insert an external file

Format: GET "file name"

The GET directive allows the inclusion of external files into the
program source. The file which is inserted is given by the string
descriptor in the operand field. GET directives can be nested to a
depth of three. The file name must be enclosed in quotes as shown.
This is especially useful when a standard set of macro definitions or
EQUs are required in several programs; the definitions are placed in
a single file and other programs reference them by means of a
suitable GET. It is often convenient to place NOLIST and LIST
directives at the head and tail of files intended to be included via
GET.

-39-

Assembler Development Kit for the QL Macro Assembler

2.7 Example programs

Example Program 1

A simple program to read and write a string.

*
* QDOS Request codes
*
MT_FRJOB EQU $05
IO_OPEN EQU $01
IO_CLOSE EQU $02
IO_FLINE EQU $02
IO_SSTRG EQU $07
*
* Macros
*
QDOS MACRO

MOVEQ #\1,D0
TRAP #\2
ENDM

*
TIDYUP MACRO

Qpos IO_CLOSE,2 Close channel
MOVEQ #-1,D1
MOVEQ #0,D3 Cancel this job
QDOS MT_FRJOB,1

*
* In case CALLed

MOVEQ #0,D0 Return code - all OK
RTS
ENDM

*
* Main program
*
* Open stream
*

MOVEQ #-1,D1 Current Job
MOVEQ #2,D3 Exclusive Device
LEA.L DEVNAME,A0 Pointer to device name
QDOS IO_OPEN,2 Open stream

-40-

Assembler Development Kit for the QL Macro Assembler

*
* Print prompt
*

MOVEQ #18,D2 Length of string
MOVEQ #-1,D3 Infinite timeout
LEA.L PROMPT,A1 Pointer to string
QDOS IO_SSTRG,3 Print prompt

*
* Read reply
*

LEA.L BUFFER, A3 Pointer to buffer
LEA.L 2(A3),A1 Skip first word
MOVEQ #30,D2 Length of buffer
QDOS IO_FLINE,3 Read input,D1 gets set

* to nbytes read
MOVE.W D1,(A3) Save no. of bytes read

*
* Print message
*

MOVEQ #6,D2 Length of text
MOVEQ #-1,D3 Infinite Timeout
LEA.L MESS,A1 Pointer to message
QDOS IO_SSTRG,3 print message
MOVEQ #0,D2 Clear D2
MOVE.W (A3),D2 Length of name
LEA.L 2(A3),A1 Pointer to name
QDOS IO_SSTRG,3 Print name

*
* Tidy up
*

TIDYUP
*
* Data Section angle
*
BUFFER DS.W 1

DS.B 30
DEVNAME DC.W 4

DC.B 'CON_'
MESS DC.B 'Hello '
PROMPT DC.B 'Enter your name : '
*
END

-41-

Assembler Development Kit for the QL Macro Assembler

Example Program 2

A routine to examine the contents of a part of memory.

*
MT_FRJOB EQU $05
IO_OPEN EQU s01
IO_CLOSE EQU $02
IO_FLINE EQU $02
IO_SSTRG EQU $07
NADDR EQU 100
*
* Macro
*
QDOS MACRO

MOVEQ #\1,D0
TRAP #\2
ENDM

*
TIDYUP MACRO

QDOS IO_CLOSE,2 Close channel
MOVEQ #-1,D1
MOVEQ #0,D3 Cancel this job
QDOS MT_FRJOB,1

* In case CALLed
MOVEQ #0,D0

RTS
ENDM

*
* Main program
*
* Open stream

MOVEQ #-1,D1 Current Job
MOVEQ #2,D3 Exclusive Device
LEA.L DEVNAME,A0 Pointer to device name
QDOS IO_OPEN,2 Open stream

*
LEA.L $28000,A4 Start address
MOVEQ #(NADDR-1),D4 (No. of addresses

* to be examined -1)

-42-

Assembler Development Kit for the QL Macro Assembler

*
* Main Loop
*
LOOP
*
* Print Address as 8 hex digits

MOVEQ #10,D2 Length of string
MOVEQ #-1,D3 Infinite timeout
LEA.L MESS1,Al Pointer to string
QDOS IO_SSTRG,3 Print string

*
MOVE.L A4,D1 Address into D1
BSR WRITE32BITS Print address

*
* Print contents of address

MOVEQ #14,D2 Length of text
MOVEQ #-1,D3 Infinite Timeout
LEA.L MESS2,Al Pointer to string
QDOS IO_SSTRG,3 Print string

*
MOVE.L (A4)+,D1 Contents to Dl & inc
BSR WRITE32BITS pointer

* Print contents
* Output L/F

MOVEQ #$0A,D1 L/F into Dl
BSR WRITECHAR Write the character

*
* All addresses examined? Loop if not
*

DBRA D4,LOOP
* Tidy up
*

TIDYUP
*
WRITE32BITS

SWAP D1
BSR.S WRITE16BITS Write top 16 bits
SWAP D1 and drop through to

* write out the low
* 16 bits
WRITEL6BITS

ROR.W #8,D1
BSR.S WRITE8BITS Write top 8 bits
ROL.W #8,D1

* (of 16) and drop
* through to write out
WRITE8BITS the low 8 bits

-43-

Assembler Development Kit for the QL Macro Assembler

ROR.B #4,D1
BSR.S WRITE4BITS Write top 4 bits
ROL.B #4,D1 (of 8) and drop

* through to write
* out the low 4 bits
WRITE4BITS

MOVE.L D1,-(SP) Save D1 on stack
ANDI.B #$0F,D1 Mask to retain

* low 4 bits
ADDI.B #'0',DL Add character

* code for zero
CMPI.B #'9',DL Is it > character

* nine
BLS.S WRITE4BITS1 No, so write

* character out
ADDI.B #'A'-'9'-1,D1 Yes, so convert

* to range A-F
WRITE4BITS1

BSR.S WRITECHAR
MOVE.L (SP)+,D1 Restore D1
RTS

WRITECHAR
MOVEM.L D0/D3/Al,-(SP) Stack registers

* used/corrupted
MOVE.W #-1,D3 Infinite Timeout
MOVEQ #IO_SBYTE,DO Code to send

* 1 byte
TRAP #3 Byte to be sent

* in D1
MOVEM.L (SP)+,D0/D3/A1 registers

*
RTS

*
*
Restore
*
DEVNAME DC.W 4

DC.B 'CON_'

MESS1 DC.B 'Address : '
MESS1 DC.B ' Contents : '
*

END

-44-

Assembler Development Kit for the QL Macro Assembler

Example Program 3

A program to pan a string inside a window which can be
increased/decreased in size as well as moved around the screen.

* Constant section
*

TTL Demonstration - Constants

*
* QDOS requests
*
* Trap #1 codes
*
MT_FRJOB EQU 5
* Trap #2 codes
IO_OPEN EQU 1
IO_CLOSE EQU 2
* Trap #3 codes
IO_FBYTE EQU 1
IO_SBYTE EQU 5
SD_BORDR EQU $C
*
SD_WDEF EQU $D
SD_CURE EQU $E
SD_PIXP EQU $17
SD_PAN EQU $1B
*
SD_CLEAR EQU $20
SD_SETIN EQU $29
*
SD_SETSZ EQU $2D
*
* Colours
*
C_GREEN EQU 4
C_WHITE EQU 7
C_CHARL EQU C_GREEN
C_CHAR2 EQU C_WHITE
*

* Key Codes
*
K_ENTER EQU $0A
K_SPACE EQU $20
K_UP EQU $D0
K_DOWN EQU $D8

-45-

Assembler Development Kit for the QL Macro Assembler

K_LEFT EQU $C0
K_RIGHT EQU $CB
K_ALT_UP EQU $D1
K_ALT_DOWN EQU $D9
K_ALT LEFT EQU $C1
K_ALT_RIGHT EQU $C9
*
* A few useful constants
*
CHWIDTH EQU 16
CHHEIGHT EQU 20
MINH EQU CHHEIGHT+2
MINW EQU CHWIDTH*6+4
MAXX EQU 512-CHWIDTH-4
MAXY EQU 256-CHHEIGHT-2
BWIDTH EQU 1 Width of window border
WIDTH EQU MINW
HEIGHT EQU MINH
x EQU 304
y EQU 200
*
* Names for
registers
*
WW EQUR D4 Current window width
WH EQUR D5 .. and height
WX EQUR D6 X position of top left
* corner
WY EQUR D7 .. and Y position
*

PAGE
TTL Demonstration - Macros

SPC 2
* Macros

SPC 2

*
* A generalised call for cursor positioning, scrolling,
* panning etc. Timeout is infinite and Al is assumed to
* contain channel to screen.
*
SCROPS MACRO

MOVEQ #\1,D1
MOVEQ #\2,D2
MOVEQ #\3,D0 Opcode into D0
MOVEQ #-1,D3 Timeout
LEA.L WINDOW,A1 Address of window block

-46-

Assembler Development Kit for the QL Macro Assembler

TRAP #3 Do it
ENDM
SPC 2

*
* A generalised call for QDOS requests
*
QDOS MACRO

MOVEQ #\1,D0 Trap code
TRAP #\2 Do it
ENDM

*
TIDYUP MACRO

QDOS IO_CLOSE,2 Close console channel
MOVEQ #-1,D1
MOVEQ #0,D3 Cancel this job
QDOS MT_FRJOB,1 Terminate this job

*
* In case CALLed

MOVEQ #0,D0 Return code - all OK
RTS
ENDM

*
PAGE
TTL Demonstration - Main program

*
* Main Program
*
INIT
*
* Open Console stream
*

MOVEQ #-1,D1 Current Job
MOVEQ #2,D3 Exclusive device

LEA.L DEVNAME,A0 Pointer to device name
QDOS IO_OPEN,2 Open channel, ID in A0

*
* Set default window
*

SCROPS 3,1,SD_SETSZ Large chars
SCROPS 0,0,SD_CURE Enable cursor

*
* Initialise window section
*

-47-

Assembler Development Kit for the QL Macro Assembler

MOVE.W (A1)+,WW Width
MOVE.W (A1)+,WH Height
MOVE.W (A1)+,WX X
MOVE.W (A1)+,WY Y
LEA.L LOGO, A4 Use A4 to point to

* current character
LEA.L LOGOE,A5 And AS to hold end
BRA SETWIN9 Display window and enter

* loop
*
* Main loop
*
SETWINDOW

BSR VDU_RDCH Get character or timeout
BEQ.S SETWINO Character ready, so

* handle that case
*
* No character typed yet, so handle scrolling of name
*
SCROPS -CHWIDTH,0,SD_PAN

MOVE.B 10(A4),D1 Get colour for this char
QDOS SD_SETIN,3 Change colour
MOVE.B (A4)+,D1 Get char
QDOS IO_SBYTE,3 Print character (A0 has

* channel ID)
BSR SETCURSOR Set the cursor back
CMPA.L A4,A5 Reached end?
BNE.S SETWINDOW No, wonderful
LEA.L LOGO,A4 Yes, reset ptr

*
* Handle window movement
*
SETWINO

CMPI.B #K_ENTER,D1 Was it ENTER ?
BEQ FINISH End program
CMPI.B #K_SPACE,D1 Was it SPACE ?
BEQ SETWINO Yes, so redraw window

SETWINL
CMPI.B #K_UP,D1 Up arrow?
BNE.S SETWIN2
CMPI.W #CHHEIGHT,WY Check for Y <= CHHEIGHT
BLT.S SETWINDOW If so, don't alter it -

* Wait for next char
SUBI.W #CHHEIGHT,WY Otherwise take CHHEIGHT

* away
BRA SETWIN9 Redraw window

SETWIN2

-48-

Assembler Development Kit for the QL Macro Assembler

CMPI.B #K_DOWN,D1 Down arrow ?
BNE.S SETWIN3
MOVE.W WH,D3 D3 = HEIGHT
ADD.W WY,D3 Add Y to it
CMPI.W #MAXY,D3 Is Y + HEIGHT >= MAXY
BGE SETWINDOW Yes - Wait for next char
ADDI.W #CHHEIGHT,WY No so add CHHEIGHT to Y
BRA SETWINO Redraw window

SETWIN3
CMPI.B #K_LEFT,D1 Left arrow ?
BNE.S SETWIN4
CMPI.L #CHWIDTH,WX Is X < CHSIZE
BLT SETWINDOW Yes, so ignore
SUBI.W #CHWIDTH,WX X=X-CHSIZE
BRA.S SETWINS Redraw window

SETWIN4
CMPI.B #K_RIGHT,D1 Right arrow ?
BNE.S SETWINS
MOVE.W WW,D3 Width
ADD.W WX,D3 plus X
CMPI.W #MAXX,D3 Are we at end of screen
BGE SETWINDOW Yes, so ignore
ADD.W #CHWIDTH,WX X=X+CHSIZE
BRA.S SETWINO Redraw window

SETWIN5
CMPI.B #K_ALT_UP,D1 ALT Up arrow ?
BNE.S SETWIN6
CMPI.W #MINH, WH is HEIGHT<=MINH
BLE SETWINDOW Yes, so ignore
SUB.W #CHHEIGHT,WH HEIGHT=HEIGHT-CHHEIGHT
BRA.S SETWIN9 Redraw window

SETWIN6
CMPI.B #K_ALT_DOWN,D1 ALT Down arrow ?
BNE.S SETWIN7
MOVE.W WH,D3 Height
ADD.W WY,D3 Add Y
CMPI.W #MAXY,D3 Is HEIGHT+Y >= MAXY
BGE SETWINDOW Yes, so ignore
ADD.W #CHHEIGHT,WH Height=Height+CHHEIGHT
BRA.S SETWIN9

SETWIN7
CMPI.B #K_ALT_LEFT,D1 ALT Left Arrow ?
BNE.S SETWIN8
MOVE.W ww,D3 Width
SUB.W #CHWIDTH,D3 Minus CHWIDTH
CMPI.W #MINW,D3 Is it <= MINW
BLT SETWINDOW Yes, so ignore

-49-

Assembler Development Kit for the QL Macro Assembler

SUB.W #CHWIDTH,WW Reduce width
BRA.S SETWIN9 Redraw window

SETWIN8
CMPI.B #K_ALT_RIGHT,D1 D1 ALT Right arrow ?
BNE SETWINDOW
MOVE.W ww,D3 Width
ADD.W Wx,D3 Plus X
CMPI.W #MAXX,D3 Is it >= MAXX
BGE SETWINDOW Yes, so ignore
ADD.W #CHWIDTH,WW Increase Width

SETWIN9
SCROPS 0,1,SD_BORDR Remove old border
SCROPS 0,0,SD_CLEAR And clear old window
LEA.L WINDOW,A1 Get address of buffer
MOVE.W WW,(A1)+ Restore Width
MOVE.W WH,(A1)+ Restore Height
MOVE.W WX,(A1)+ Restore X
MOVE.W WY,(A1) Restore Y
SCROPS C_WHITE,

BWIDTH,SD_WDEF
Redefine

* window
SCROPS 0,0,SD_CLEAR Clear Screen
BSR.S SETCURSOR Set the cursor correct
LEA.L LOGO,A4 Reset character pointer
BRA SETWINDOW Go back and get next key

*
* Tidy up
*
FINISH

TIDYUP
*
* Position cursor to standard place (PIXP
specified
* relative to window)
*
SETCURSOR

MOVEQ #0,D2 Cursor at top position
MOVE.W WW,D1 Right hand edge x-coord
SUBI.W #CHWIDTH*2+5,D1 Less two chars width

* and allow for border
MOVEQ #-1,D3 Timeout
QDOS SD_PIXP,3 Position cursor
RTS

*
* Read one char from the keyboard
*

-50-

Assembler Development Kit for the QL Macro Assembler

VDU_RDCH
MOVEQ #30,D3 Some timeout
QDOS IO_FBYTE,3 Get a character in D1.B

* (AO has channel ID)
TST.L DO Check for timeout =0 if

* char typed
RTS

*
* Data area
*
* Window co-ordinates
*
WINDOW DC.W WIDTH

DC.W HEIGHT
DC.W X
DC.W Y

*
DEVNAME DC.W 22

DC.B 'CON_100x22a304x200_128'
LOGO DC.B 'MetaComCo '

LOGOE DC.B C_CHAR1,C_CHAR2,C_CHAR2,C_CHAR2
DC.B C_CHAR1,C_CHAR2,C_CHAR2
DC.B C_CHAR1,C_CHAR2,C_CHAR2

*
END

-51-

Assembler Development Kit for the QL Instruction Set

Appendix A: The 68000 instruction set

The address modes are represented as follows:

An Any address register

Dn Any data register

Rn Any register

(An) Address register indirect
d(An) with displacement

-(An) with predecrement

(An)+ with postincrement

<ea> Any address mode
<aea> Alterable address mode
<cea> Control address mode
<dea> Data address mode
<caea> Control alterable address mode
<daea> Data alterable address mode
<maea> Memory alterable address mode

<rl> Register list
<imm> Immediate data

The different categories of effective address are classified in the
following table:

A-1

Assembler Development Kit for the QL Instruction Set

Addressing modes Data Memory Control Alterable

 Dn X - - X
 An - - - X

 (An) X X X X
 (An)+ X X - X
 -(An) X X - X
 d(An) X X X X
 d(Rn,An) X X X

 Absolute X X X X
 PC relative X X X -
 PC relative index X X X -

 Immediate X X - -

The sizes for each instruction are given as B for byte, W for word
and L for long. Under the column 'Modes' are listed examples of the
various, forms of address modes. If a number of instructions have the
same form, then only the first one is used in the examples. Where the
syntax differs for different instructions, all possible variations
are included.

A-2

Assembler Development Kit for the QL Instruction Set

Description Name Modes

 Add binary ADD <ea>,Dn
 Dn, <maea>

 ADDA <ea>,An
 ADDI #<imm>,<daea>
 ADDQ #<imm>,<aea>
 ADDX Dn,Dn

 -(An),-(An)

 Add decimal ABCD Dn,Dn
 -(An),-(An)

 Arithmetic shift left ASL Dn,Dn
 #<imm>,Dn
 <maea>

 Arithmetic shift right ASR

 Bit test and change BCHG Dn,<daea>
 #<imm>,<daea>

 Bit test and clear BCLR
 Bit test and set BSET
 Bit test BTST Dn,<dea>

 #<imm>,<dea>

 Branch on condition Bcc <label>
 Branch unconditionally BRA
 Branch to subroutine BSR

 Check and possibly TRAP CHK <dea>,Dn

 Compare CMP <ea>,Dn
 CMPA <ea>,An
 CMPI #<imm>,<daea>
 CMPM (An)+,(An)+

 Compare with zero TST <daea>

 Decrement test & branch DBcc Dn,<label>
 Decrement & branch DBRA

A-3

Assembler Development Kit for the QL Instruction Set

Description Name Modes Size

 Division - signed DIVS <dea>,Dn W

 Division - unsigned DIVU W

 Exchange registers EXG Rn,Rn L

 Jump JMP <cea> -

 Jump to subroutine JSR -

 Load effective address LEA <cea>,An L

 Logical AND AND <dea>,Dn BWL

 Dn,<maea>

 ANDI #<imm>,<daea> BWL

 ANDI to CCR #<imm>,CCR B

 ANDI to SR #<imm>,SR W

 Logical exclusive OR EOR Dn,<daea> BWL

 EORI #<imm>,<daea> BWL

 EORI to CCR #<imm>,CCR B

 EORI to SR #<imm>,SR W

 Logical OR OR <dea>,Dn BWL

 Dn,<maea>

 ORI #<imm>,<daea> BWL

 ORI to CCR #<imm>,CCR B

 ORI to SR #<imm>,SR W

 Logical shift left LSL Dn,Dn BWL

 #<imm>,Dn

 <maea>

 Logical shift right LSR BWL

A-4

Assembler Development Kit for the QL Instruction Set

Description Name Modes Size

 Move data MOVE <ea>,<daea> BWL
 MOVEA <ea>,An WL

 Move multiple MOVEM <rl>,-(An) WL
 <rl>,<caea>
 (An)+,<rl>
 <cea>,<rl>

 Move to peripheral MOVEP Dn,d(An) WL
 d(An),Dn

 MOVEQ #<imm>,Dn L
 MOVE to CCR <dea>,CCR W
 MOVE to SR <dea>,SR W
 MOVE from SR SR,<daea> W
 MOVE USP USP,An L

 An,USP

 Multiply - signed MULS <dea>,Dn W
 Multiply - unsigned MULU W

 Negate binary NEG <daea> BWL
 NEGX BWL

 Negate decimal NBCD <daea> B

 No operation NOP

 Logical complement Not NOT <daea> BWL

 Push effect address PEA <cea> L

 Reset RESET -

 Return from exception RTE -
 Return and restore CCR RTR -
 Return from subroutine RTS -

A-5

Assembler Development Kit for the QL Instruction Set

Description Name Modes Size

 Rotate left ROL Dn,Dn BWL
 #<imm>,Dn
 <maea>

 ROXL BWL
 Rotate right ROR BWL

 ROXR BWL

 Set from condition Scc <daea> B

 Set to zero CLR <daea>,Dn BWL

 Sign extend EXT Dn WL

 Stop execution & wait STOP #<imm> -

 Subtract binary SUB <ea>,Dn BWL
 Dn,<maea>

 SUBA <ea>,An WL

 SUBI #<imm>,<daea> BWL

 SUBQ #<imm>,<aea> BWL

 SUBX Dn,Dn BWL

 -(An),-(An)

 Subtract decimal SBCD Dn,Dn
 -(An),-(An) B

 Subroutine link LINK An,#<imm> -

 Subroutine unlink UNLK An -

 Swap register halves SWAP Dn W

 Test bit and set TAS <daea> B

 Trap exception TRAP #<imm> -
 TRAP if overflow TRAPV ms -

A-6

Assembler Development Kit for the QL Instruction Set

Conditional tests

instruction set

The following may be specified as the conditional test in the branch
to condition (Bcc), decrement test and branch (DBcc) and set from
condition (Scc) instructions. Also T and F may be used to indicate
True and False in DBcc and Scc instructions.

In the following table, C indicates that the C status bit must be
set, and C' means that the bit must be unset for the condition to be
true. Two symbols, & and | are used to connect conditions. & means
that both must be true; | means that either may be true.

Condition Name Test

 Carry clear CC C'
 Carry set CS C
 Equal EQ Z
 Not equal NE Z'
 Plus PL N'
 Minus MI N
 Overflow clear VE V'
 Overflow set VS V

 High HI C' & Z'
 Low or same LG C | Z
 High or same HS C'
 Low LO C

 Greater than GT (N & V & Z')|(N' & V' & Z')
 Greater than or equal GE (N & V)|(N' & V')
 Less than or equal LE Z|(N & V')[(N' & V)
 Less than LT (N & V')[(N' & V)

A-7

Assembler Development Kit for the QL Installation

Appendix B: Installation

Changing the default window

Both the editor and the assembler allow the window which is to be
used to be altered as part of the initialisation sequence. If this
option is not required then the default window is used. This is
initially the same as the window used during the start of the
program, but if required the default window may be altered
permanently by patching the programs. This is useful where a certain
window size and position is always required and means that the window
does not have to be positioned correctly each time the program is
run.

Changing the default drive name

For those users who upgrade their QLs with disc drives, there is the
possibility of changing the default drive to something other than
mdv1. This option will not be given when installing the editor ED
since it can be EXECed from any device.

The INSTALL program

The program INSTALL is supplied on the distribution microdrive to
perform both of the above tasks. It is run by the command:

LRUN mdv1_install

The program starts by asking whether the default window is to be set
up for TV or monitor mode. The minimum window size is greater in TV
mode because the characters used are larger. You should answer T if
you are setting the default for use with TV mode and M if you are
setting it for use with monitor mode. Note that the current mode in
use is of no consequence.

The standard window will appear on the screen and can be moved by
means of the cursor keys and altered in size by means of ALT cursor
keys. This is similar to the mechanism used when altering the window
during normal program initialisation. Once the window is in the right
place and of the desired size, press ENTER.

B-1

Assembler Development Kit for the QL Installation

The program now asks for the name of the file which is to be
modified. If you wished to alter the editor then the file would
probably be something like 'mdv1_ed'. The next item requested is the
name of the program. When a new job such as the editor or the
assembler is running on the QL, it has a name associated with it.
This can be inspected by suitable utilities. The name is six
characters long, and whatever is typed here is used as the name and
forced to the correct length. The name is of little importance except
for job identification.

In the case of the assembler the program will then go on to ask for a
default drive name where it should look for its overlays. If you do
not wish to change the default drive name the reply should be:

MDV1

(Note - the reply must not be MDV1_). If you do wish to change the
default drive name the reply should be the device name, for example:

FLP1

In this latter case the assembler will append 'FLP1_' to its overlays
before attempting to load them.

The INSTALL program will then modify the file specified. INSTALL can
be run as many times as you like to alter the default window of the
editor or the assembler. It is unlikely to be useful with programs
other than those distributed by Metacomco that provide user selection
of an initial window such as Metacomco's Assembler, LISP and BCPL.

B-2

Assembler Development Kit for the QL The Linker Program

Appendix C: The Linker Program

The commands XDEF and XREF make it possible for an assembler program
to refer to labels not defined within the program itself, but defined
elsewhere in another quite separate assembler program.

When a program containing XDEFs and/or XREFs is assembled, the output
module produced is in a special format (Sinclair Relocatable Binary
Object File Format). This file cannot be directly EXECed but must be
linked with the module(s) in which the external labels are defined.
The linker program supplied on the microdrive will link such modules
together to produce an EXECable file.

Note that the linker is only capable of linking two or more modules
produced by the Metacomco assembler. It is not suitable for linking
Assembler modules to modules produced by compiling a high level
language program.

To run the linker one types:

EXEC MDV1_LINKER
or

EXEC_W MDV1_LINKER

The linker first asks for a workspace size. The reply given should be
a number (of bytes) optionally followed by a 'K' which converts the
requested number to Kilobytes. The minimum size which can be asked
for is 1K. If no number is typed the linker will use its default
workspace size (10K).

It will then go on to ask for each of the Binary files (up to a
maximum of 20 code files produced by the assembler) in turn and,
having read each file, will report the file's length. This length
does not include all the extra bytes put in the file by the assembler
to create the special file format. When just ENTER is typed in reply
to the request for a binary file the linker will start its second
pass which entails re-reading each file in turn.

C-1

Assembler Development Kit for the QL The Linker Program

After processing all the files, the linker will ask for a name for an
output file and then a stack size (in bytes) which will be used with
the program when it is run. An example containing external references
now follows. The program has been split into four separate programs
which must be assembled separately and the resulting code files
linked together.

Program a

* Program a

MT_FRJOB EQU $05
IO_OPEN EQU $01
IO_CLOSE EQU $02

QDOS MACRO
MOVEQ #\1,D0
TRAP #\2
ENDM

XREF PRINTP,PRINTM

* Open stream

OPENFL MOVEQ #-1,D1 Current job
MOVEQ #2,D3 Exclusive device
LEA.L DEVNAME,A0 Point to device name

QDOS IO_OPEN,2
* Print prompt

JSR PRINTP

* Print message

JSR PRINTM

* Tidy up
QDOS IO_CLOSE,2
MOVEQ #-1,D1
MOVEQ #0,D3 Cancel this job
QDOS MT_FRJOB,1

* In case called

MOVEQ #0,D0 Return code - all OK
RTS And home

C-2

Assembler Development Kit for the QL The Linker Program

* Data Section

DEVNAME DC.W 4
DC.B 'CON_'

END

C-3

Assembler Development Kit for the QL The Linker Program

Program b

* Program b

IO_SSTRG EQU $07
QDOS MACRO

MOVEQ #\1,D0
TRAP #\2
ENDM

XREF READREP, MESS, PROMPT, BUFFER
XDEF PRINTP, PRINTM

* Print prompt

PRINTP
MOVEQ #18,D2 Length of text
MOVEQ #-1,D3 Timeout
LEA.L PROMPT,A1 Message
QDOS IO_SSTRG,3

* Read reply

JSR READREP Get reply
RTS Return to calling

* program

* Print message

PRINTM
MOVEQ #6,D2 Length of text
MOVEQ #-1,D3 Timeout
LEA.L MESS,A1 Message
QDOS IO_SSTRG,3
MOVEQ #0,D2 Clear D2
LEA.L BUFFER,A3 Pointer to name
MOVE.W (A3),D2 Length of name
LEA.L 2(A3),A1 Ptr to name
QDOS IO_SSTRG,3
RTS

*
END

C-4

Assembler Development Kit for the QL The Linker Program

Program c

* Program c

IO_FLINE EQU $02

XREF BUFFER
XDEF READREP

* Read reply

READREP
LEA.L BUFFER,A3 Ptr to buffer
LEA.L 2(A3),A1 Skip first word
MOVEQ #30,D2 Length of buffer
MOVEQ #IO_FLINE,DO
TRAP #3
MOVE.W D1,(A3) Save number

* of bytes read
RTS

*
END

Program d

* Program d

XDEF BUFFER , MESS, PROMPT

* Data Section

BUFFER DS.W 1
DS.B 30

MESS DC.B 'Hello '
PROMPT DC.B 'Enter your name
*

END

C-5

 Index

Index

A
A (ED) 11, 14
Absolute code 18
Absolute expression 25, 28
Absolute memory locations 28
Absolute origin 27
Absolute symbols 22, 23
Add ("+") 22
Address modes 15, 25, 26
Address register 15, 25, 30
Address space 15
Aligning code 35
ALT 2, 3, 17
ALT-DOWN 6, 13
ALT-LEFT 4, 13
ALT-RIGHT 4, 13
ALT-UP 6, 13
Altering text 11
Altering windows 2, 17
An (address register A0-A7) 25
And "&" 22
Arguments 37
ASCII Literal 24
ASM 16
ASM command arguments 16
Assemble if equal 28
Assemble if Equal 36
Assemble if not equal 28, 36
Assembler Directives 20, 21, 27
Assembler, loading the 16
Assembly control 27, 28
Assembly listing 16, 17
Assign values 27
Automatic RH margin 5

B
B Byte size (8-bits) 21
B (ED) 9, 14
Backwards find 10, 14
BE (ED) 9, 14
BF (ED) 10, 14
Binary code output 17
Binary numbers 24
Blank lines 20
Block control 9, 14
Block end 9, 14
Block start 9, 14
Bottom of file 9
BS (ED) 9, 14

C
CCR (Condition Code register) 15, 23,
30
CE (ED) 9, 14
Checking program syntax 17
CL (ED) 9, 14
CNOP 28, 35
Code file (assembler) 17
Command line 2
Commands groups 12
Commands, extended 2, 6, 7, 14
Commands, intermediate 2, 4
Commands, multiple 7
Commands, repeating 6, 11
Comment field 21
Comment or blank lines 20
Conditional assembly 28, 35
Conditional Code Register
(See CCR) 15
conditional expansion of macros 38
Conditional NOP 28, 35
constants, Define 27
Control characters 11
control key combinations 2, 3, 13
Control of listing 27
Copy listing 16
CR (ED) 9, 14
CS (ED) 9, 14
CTRL 3
CTRL-ALT-LEFT 3, 5, 11, 13
CTRL-ALT-RIGHT 5, 13
CTRL-C 1, 6
CTRL-DOWN 5, 13
CTRL-LEFT 5, 7, 13
CTRL-RIGHT 5, 7, 11, 13
current program counter 24
cursor control 4
Cursor left 9, 14
Cursor right 9, 14
Cursor to end of line 14
Cursor to next line 14
Cursor to previous line 14
Cursor to start of line 14

D
D (ED) 11, 14
Data definition 27, 31
Data register 15, 25, 30
Data size 32

-i-

 Index

DB (ED) 14
DC 27, 31
DC (ED) 11, 14
Decimal numbers 24
Default line length 34
Default page length 34
Default window 2, 17
Define a macro name 28
Define an external name 39
Define constant 27, 31
Define external name 28
Define internal label as external
entry point 38
Define storage 27
Define Storage 32
Delete at cursor 5, 11, 13, 14
Delete block 14
Delete current line 14
Delete key 5
Delete left 13
Delete line 5, 13
Delete right 13
Delete to end of line 5, 13
Delete word 5, 13
Deletes current line 11
Delimiters 7, 10
Directives 23, 27, 28
Disable assembley 36
Disable listing 17, 27, 33
Disable object code 27, 35
Disable paging 27, 33
Distinguish between U/C and l/c 14
Divide "/" 22
Dn (data register D0-D7) 25
DOWN 4, 13
DS 27, 32

E
E (ED) 10, 14
ED 1-11, 13, 14
ED, loading 1
ED, terminating 1
Editing more than one file 1, 6, 8,
14
Effective Address types 15
Enable assembly 36
Enable listing 27, 33
Encoding programs (Assembler) 20
END 27, 30, 33
End conditional assembly 28, 36
End of line 9
End of macro definition 28
End of program 30

ENDC 28, 36
ENDM 28, 37
ENTER 5
Enter extended mode 13
EQ (ED) 11, 14
EQU 23, 24, 27, 30, 31
Equate register value 30
Equate symbol value 30
Equate U/C and l/c in searches 14
EQUR 24, 27, 30
Error display 17
Error messages 2
Error, user 35
Escape characters 4
EX (ED) 5, 8, 14
Example programs 40-43, 45-51
Exchange and query 11, 14
Exchange strings 10, 14
Exchanging 10
EXEC 1, 6, 16
EXEC_W 1, 6, 16
Executable instructions 20
Exit (ED) 7, 8, 14
Exit from macro expansion 28, 38
Expressions 22
Extend margins 8, 14
Extended commands 7-10, 12, 14
External file, insertion 39
External names, use of 19, 37-39

F
F (ED) 10, 14
F2 6, 13
F3 7, 13
F4 6, 13
FAIL 27, 35
Filenames 1
Find string 10, 14
Flag an error 35
Forward reference 30, 31
Function keys 3, 13

G
General directives 28, 39
Generate a user error 35
Generate an assembly error 27
GET 28, 39
GET directive nesting 39

H
Hexadecimal numbers 24
Horizontal scrolling 1, 4, 8

I

-ii-

 Index

I (ED) 11, 14
IB (ED) 9, 14
IF (ED) 9, 14
IFEQ 28, 36, 38
IFNE 28, 36, 38
Immediate commands 4-6, 13
Insert after current line 11, 14
Insert an external file 39
Insert before current line 11, 14
Insert blank line 5, 13
Insert block 9, 14
Insert file 9, 14
Insert file in the source 28
inserted 5
Inserting text 4, 8, 11, 14
Instruction names 23

J
J (ED) 11, 14
Join next line with current 11, 14

K
Keywords 2

L
L, Long Branch specifier 21
L, Long Word sized data (32 bits) 21
Labels 20, 27, 28, 30, 31, 37, 39
LC (ED) 11, 14
LEFT 4, 7, 13
Line length 4, 7
LIST 27, 33
Listing control 16, 17, 27, 32
LLEN 27, 34
Loading ED 1
Loading the assembler 16
Lshift ("<<") 22

M
M (ED) 10, 14
MACRO 28, 37, 38
Macro Assembler 15-26, 28-51
Macro definition 28, 37, 38
Macro expansion display 17
Margins 5, 8, 14
Memory 16
Memory address 21
Message area 2
MEXIT 28, 37, 38
Monadic minus operator 22
Move down 6, 13
Move left 4, 13, 14
Move right 4, 13, 14
Move to bottom of file 14

Move to end of line 13, 14
Move to end of screen 4, 13
Move to line number 10, 14
Move to next word 4, 13
Move to previous word 4, 13
Move to start of line 13, 14
Move to top of file 14
Move to top of screen 4, 13
Move up 6, 13
Moving in file 4, 6, 9, 14
Moving windows 2
Multiple commands 2
Multiply ("*") 22

N
N (ED) 9, 14
Next line 9
NOL (NOLIST) 33
NOLIST (NOL) 17, 27, 33
NOOBJ 27, 35
NOPAGE 27, 33
Numbers 24

O
Object code 17, 27, 35
Object code file 35
Object code module 35
Object code output 27
Opcode field 21
Operand field 21, 28, 30, 34, 36, 39
Operands 22
Operation codes 21
Operators 22
Or "!" 22
ORG 17, 18, 24, 27, 28
Origin 27
Output file format 17, 19

P
P (ED) 9, 14
PAGE 16, 27, 32
Page heading 34
Page length 27, 34
Page throw 16, 27, 32
Paging 33
PLEN 27, 34
Position independent code 17
precedence of operators 22
Previous line, move to 9, 14
Program control 7
Program counter
PC 15, 21, 28, 29
Program end 27
Program source 39

-iii-

 Index

Program title 27, 34

Q
Q (ED) 7, 14
Quit 7, 14
Quote marks in strings 24

R
R (ED) 8, 14
Re-entering editor 14
Redraw screen 13
Reference external name 28
Register 24
Register names 23
Relative expression 25
Relative symbol value 24
Relocatable code 17, 18
Relocatable origin 27
Relocator 18
Repeat last command 13
Repeat until error 11, 14
Repeating commands 6, 11
Reserve memory locations 32
RETURN / ENTER 11
Rewrite screen 6
RIGHT 4, 7, 13
Right hand margin 5
RORG 24, 27, 29
RP (E) 11, 14
Rshift (">>") 22
Run assembler 16

S
S (ED) 11, 14
S Short Branch specifier 21
SA (ED) 7, 8, 14
Save text file 7, 8, 14
SB (ED) 9, 14
Screen display 3
Screen editor 1-11, 13, 14
Screen rewrite 6
Scrolling text 1, 4-6, 8, 13
Search for any case 11, 14
Search for specified case 11, 14
Searching 10, 14
SET 23, 24, 27, 31
Set absolute origin 28
Set left margin 8, 14
Set page length 27, 34
Set program title 27, 34
Set relative origin 29
Set right margin 8, 14
Set symbol value 31
Set tabs 8, 14

SH (ED) 8, 14
SHIFT 3
SHIFT-CTRL-RIGHT 5, 13
SHIFT-DOWN 4, 13
SHIFT-ENTER 4
SHIFT-LEFT 4, 13
SHIFT-RIGHT 4, 13
SHIFT-SPACE 4
SHIFT-UP 4, 13
Show block 9, 14
Show current state 8
Show information 14
SIZE 29
Size of data area 29
Size qualifiers 15
Size specifier 21, 25, 31, 32
Skip n lines 27
SL (ED) 8, 14
Source code 37
Source file (assembler) 16
SP (Sack pointer) 23
SP (Stack pointer) 15
Space blank lines 33
SPC 27, 33
Special keys 2, 3, 13, 17
Split current line 5, 11, 14
SR (ED) 5, 8, 14
SR (Status Register) 15, 23, 30
ST (ED) 8, 14
Stack pointer (SP) 15
Start a macro definition 37
Start of line 9
Status Register (see SR) 15, 23, 30
Storage, define 27
String descriptor 39
Subtract ("-") 22
Switching windows 6
Symbol definition 27, 30
Symbols 23
Syntax for address mode 25, 26
System state 15

T
T (ED) 10, 14
TAB 4
TAB setting 8
Terminate a macro definition 38
Terminating ED 1
Title of program 27, 34
Top of the file 9, 14
TTL 27, 34

U
U (ED) 8, 14

-iv-

 Index

UC (ED) 11, 14
Undo last change 8, 14
Unique label generation 37
UP 4, 13
User error 35
User operation state 15
USP 23, 30

V
Vertical scrolling 1, 4, 8

W
W Word sized data (16 bits) 21
WB (ED) 9, 14
windows 1, 2, 6, 17
Workspace 1, 2, 17
Write block to file, at 9, 14

X
X (ED) 7, 14

XDEF 19, 28, 38
XREF 19, 28, 39

"
"_" character 23
"-" character 22
"," character 21, 31
"." character 21, 23
"@" symbol 23, 37
"*" character 20, 22, 24
"/" Divide 22
"\" symbol 37
"&" And 22
"%" symbol 24
"+" Add 22, 37
"<" symbol 37
"<<" (Lshift) 22
">" symbol 37
">>" (Rshift) 22
"$" symbol 24

-v-

	Chapter 1: The Screen Editor
	1.1 Introduction
	1.2 Immediate commands
	Cursor control
	Inserting text
	Deleting text
	Scrolling
	Repeating commands

	1.3 Extended commands
	Program control
	Block control
	Movement
	Searching and Exchanging
	Altering text
	Repeating commands

	1.4 Command list
	Immediate commands
	Extended Commands

	Chapter 2: The Macro Assembler
	2.1 Introduction
	2.2 Running the Assembler
	2.3 Program encoding
	Comments
	Executable Instructions
	Label Field
	Opcode Field
	Operand Field
	Comment Field

	2.4 Expressions
	Operators
	Operand Types for Operators
	Symbols
	Absolute
	Relative
	Register

	Numbers

	2.5 Addressing modes
	2.6 Directives
	Assembly Control
	ORG Set Absolute Origin
	RORG Set Relative Origin
	SIZE Size of data area
	END End of program

	Symbol Definition
	EQU Equate symbol value
	EQUR Equate register value
	SET Set symbol value

	Data Definition
	DC Define Constant
	DS Define Storage
	PAGE Page Throw
	LIST Enable Listing
	NOLIST Disable Listing
	SPC Space Blank Lines
	NOPAGE Disable Paging
	LLEN Set Line Length
	PLEN Set Page Length
	TTL Set Program Title
	NOOBJ Disable Object Code Generation
	FAIL Generate a user error

	Conditional Assembly
	CNOP Conditional NOP
	IFNE Assemble if Not Equal
	ENDC End conditional assembly

	Macro Directives
	MACRO Start a macro definition
	ENDM Terminate a macro definition
	MEXIT Exit from macro expansion

	External Symbols
	XDEF Define an internal label as an external entry point
	XREF Define an external name

	General Directives
	GET Insert an external file

	2.7 Example programs
	Example Program 1
	Example Program 2
	Example Program 3

	Appendix A: The 68000 instruction set
	Conditional tests

	Appendix B: Installation
	Changing the default window
	Changing the default drive name
	The INSTALL program

	Appendix C: The Linker Program
	Program a
	Program b
	Program c
	Program d

	Index

