
QoE Ethernet Device Driver for the Q68
User Manual

This is an Ethernet driver for the Q68 computer. It implements an IP device driver for your Local
Area Network (LAN). It can be used to communicate with other Q68 computers, or QL
emulators that have the IP device driver built in, and support UDP and TCP connections. Such
as QPC2.

The driver sends and receives standard IP data packets, So it can also talk to other devices and
systems. This implementation is not a complete IP stack, so you may find some things are not
fully supported.

This driver is intended for the Q68 computer only. It will not work on any other QL compatible
computer.

It supports UDP data packets and a pseudo TCP protocol. The TCP does not support all the
usual TCP features. It does not support errors, or lost packets. So all the data packets must
arrive, and in the correct order. This should be OK over a LAN, but you may have problems if
you try to use the TCP over the internet.

The goal of this TCP implementation, is to support the IP Network driver. So the Q68 can
operate a QL like network over a LAN.

DHCP can also be used to obtain an IP address automatically from a DHCP server.

Domain names are now supported. They will be resolved into IP addresses if a DNS server is
available. Domain names once fetched are added to a DNS cache. This cache may be flushed,
and domain names may also be added manually.

The driver will also handle ARP packets to handle MAC address requests, and Ping packets.
Anything else sent to the driver is liable to be thrown away.

Many of the system calls from the QDOS IP device driver by Richard Zidlicky have been
implemented in this driver. Although some features of the system calls may be missing. See the
section on system calls.

QPAC2 'channels' will display information on open Ethernet channels (courtesy of routines by
Wolfgang Lenerz).

The IP_XINF system trap has been extended to accommodate DHCP and DNS.

An ETH_IPCONFIG command has been added which lists information about the Ethernet
controller and driver status.

Acknowledgements
Thanks to Peter Graf, Martyn Hill, and Wolfgang Lenerz for their help and advice in
development and testing of the driver.

Martin Head Release V0.39

Introduction

This device driver creates an IP stack with limited functionally. So don't expect full compatibility
with a real IP network.

Note that the unlike TCP where the receipt of data packets is acknowledged back to the sender.
The UDP protocol is very much a 'fire and forget' system, with no guarantee of the data packets
getting through to the destination. The CP2200 Ethernet controller IC used in the Q68 can only
store up to 8 received data packets, or 4K bytes of data (whichever comes first) before it starts
to ignore received data packets.

In the background, the driver tries to keep the receive buffer in the CP2200 empty. However if
data packets arrive too quickly, it may not be able to keep up. In which case data packets may
get lost. If you wish to avoid this, you will need to implement your own acknowledgement
system.

Getting Started

LRESPR the Q68NET_BIN file. This should produce a message in #0, of

QoE Ethernet Driver for Q68 Vx.xx
Initializing CP2200

If you are running SMSQ/E, the initialization messages should be in the system language.
English, French, German, Italian and Spanish are currently supported.

If you also receive a message of Self Initialization timed out or Auto-
negotiation failed. Then there was a problem during initialization of the CP2200 Ethernet
controller IC. If Auto-negotiation fails, then the driver will attempt to re-initialize in half duplex
mode. So if you see an Auto-negotiation failed error, then the duplex mode has been set to half
duplex. You can try to re-initialize the CP2200 with the ETH_INIT command.

You may also use the ETH_ERRNO function for a clue as to what went wrong

You now need to assign an IP Address to the Q68 with the ETH_SETIP command

e.g. ETH_SETIP "172.16.0.20"

Using ETH_SETIP without a parameter will start a DHCP client job, That will attempt to obtain
an IP address from a DHCP Server on the network.

You may want to set a subnet mask with the ETH_SUBNET command, The default is
255.255.255.0
The subnet may also be set for you by the DHCP Client.

If you have a router, you can use the ETH_GATEWAY command to set it.
The gateway may also be set for you by the DHCP Client.

2 09/21

Example usages

In these examples I am using a Q68 and a Windows computer(XP) running QPC2 V4.05. Alter
the values given to suit your requirements.

UDP

Q68
LRESPR the driver, and when initialization is complete.

ETH_SETIP "172.16.0.20" This is the IP Address for the Q68.

OPEN_NEW#4,"udp_172.16.0.20:5800" Sets the Q68 to open it's network port 5800.

QPC2 (Assuming that the Windows computer is on the same network "172.16.0.xx")

OPEN_IN#4,"udp_172.16.0.20:5800" Sets QPC2 to talk to the Q68's port 5800.

On the Q68, Enter REPeat loop:INPUT#4,a$:PRINT LEN(a$)!!!a$

Do this before the next the next step. The reason being that, it sets the Q68 waiting for input.
If you tried to PRINT#4 from the Q68 now. The Q68 will not know where to send to, As it does
not know the IP address of the other computer.

On QPC2, Enter PRINT#4,"Hello There" This should appear on the Q68.

You may need to do this twice. For some reason QPC2 may not send the first string, It sends
the Carriage Return on the end, but not the actual string.

Enter PRINT#4,FILL$("X",2000) Which should also appear on the Q68.
This is sent as a fragmented packet, as it is longer than the 1472 bytes that will fit in one data
packet.

Break into the loop on the Q68, and reverse the process.
In QPC2, Enter REPeat loop:INPUT#4,a$:PRINT LEN(a$)!!!a$

and in the Q68 enter and run the program
100 a$="hello"
110 FOR n = 1 TO LEN(a$)
120 PRINT#4,a$(n);
130 END FOR n
140 PRINT#4

and then try, a$=FILL$("Z",2000) : GO TO 110

Why not PRINT#4,"hello"? Well INPUT# in the QPC2, UDP IP device driver does not seem to
like more than one character at a time being sent in a data packet.

09/21 3

IP Network Driver

The IP Network driver is an adaption of the standard QL Network driver, that uses a TCP
connection. It can be downloaded as 'NETdriver114.zip' from
'www.dilwyn.me.uk/internet/index.html'

Q68
LRESPR the QoE driver, and when initialization is complete.

ETH_SETIP "172.16.0.2" This is the IP Address for the Q68.

LRESPR the IP Network driver.

NET_START "172.16.0.2" This starts the IP Network driver.
You could also use NET_START ETH_GETIP$

This sets the Q68 as the QL Network station 2

QPC2 (Assuming that the Windows computer's IP address is "172.16.0.1")

LRESPR the IP Network driver.

NET_START "172.16.0.1" This starts the IP Network driver running in QPC2.

This sets QPC2 as the QL Network station 1

FSERVE

You now have most of the facilities of a normal QL Network. Including the NETI and NETO
devices.

Q68
DIR n1_win1_ Will give a directory of WIN1_ in QPC2.

You can also use FSERVE on the Q68. Which would give QPC2 access to the Q68's devices.

If the last octet of the IP address of the FSERVE server is greater than 8, then you will need to
use the MAP_N command on the remote station for FSERVE accesses. See the IP Network
driver manual for details.

4 09/21

Opening Channels

I have tried as far as possible to follow the IP Device Driver as used in some QL emulators for
the opening of channels

There are 3 devices available SCK_, UDP_, and TCP_.

OPEN just creates a socket of the requested type/protocol. An IP address & port are not
required.

OPEN_IN creates a socket of the requested type/protocol. It sets the peer address for UDP
sockets, or opens a connection to a server for TCP. The IP address and Port must be specified.

OPEN_NEW creates a socket of the requested type/protocol. It sets the host address for UDP
sockets. The IP Address used in the OPEN_NEW command, should be the IP Address of the
computer it's used on, or "0.0.0.0"

Note- It's a bit counter intuitive, but OPEN_IN creates an output channel, and OPEN_NEW
creates an input channel. However once the connection has been established, the channels are
then bi-directional. This is how the OPEN commands are defined in the QDOS IP device driver.

syntax: channel_number := numeric_expression
socket_type := SCK_ | UDP_ | TCP_
IP_address := IP Address in IPv4 numbers-and-dots notation, or a Domain name
port := Integer between 0 and 65535, or a Service name
IP_specifier := socket_type_IP_address:port

OPEN#channel_number,socket_type
OPEN_IN#channel_number,IP_specifier
OPEN_NEW#channel_number,IP_specifier

FOPEN([#channel_number,]socket_type)
FOP_IN([#channel_number,]IP_specifier)
FOP_NEW([#channel_number,]IP_specifier)

example: i. OPEN#4,SCK_
 ii. OPEN_IN#5,”TCP_192.168.0.10:5800"

iii. OPEN_NEW#ch,”UDP_192.168.0.5:5800”
vi. OPEN_IN#5,”TCP_google.com:ftp"
v. OPEN_IN#5,”TCP_gmail.com:smtp"
vi. OPEN_IN#5,”UDP_129.69.1.59:https"
vii. OPEN_IN#5,”TCP_test1.workgroup.com:50000"

09/21 5

ETH_INIT
FETH_INIT
ETH_INIT will attempt to (Re)Initialize the CP2200 Ethernet controller.

The optional parameter is the required duplex mode to be used by the Ethernet controller.
0 (default) = Auto-negotiation, 1 = Full duplex, 2 = Half duplex.

Auto-negotiation will attempt to communicate with the Ethernet controller on the other end of the
connection, and both ends will agree on a speed and duplex mode to use.

FETH_INIT is a function version of ETH_INIT and will return 0, or an error code

Returns a Not Found error if the Ethernet driver cannot be found. And a Transmission error if
Auto-negotiation fails

syntax: type := numeric_expression

ETH_INIT [type]
FETH_INIT [(type)]

example: i. ETH_INIT Try to auto-negotiate a connection
i. ETH_INIT 1 Set the Ethernet controller to use Full duplex

 iii. PRINT ETH_INIT (2) Set the Ethernet controller to use Half duplex

Note: If ETH_INIT 0 fails, then the Ethernet controllers duplex mode is undefined. You must
retry the command, or manually set the duplex mode with ETH_INIT 1, or ETH_INIT 2.

ETH_MAC$
The function ETH_MAC$ will return the MAC address of the CP2200 Ethernet controller as a
dash separated string.

syntax: ETH_MAC$

example: PRINT ETH_MAC$

ETH_SETIP
ETH_SETIP will set the IP Address that the Q68 will use.
Setting, or resetting the IP address will cause a gratuitous ARP request to be broadcast over the
network, to inform any other computers of it's change.

Using ETH_SETIP without a parameter will initiate an attempt to contact a DHCP server.
If it finds that the DHCP client job is already running, It asks for confirmation to continue. Before
attempting to release the currently assigned IP address and shutting down the existing DHCP
client.

ETH_SETIP without a parameter will wait up to 2 minutes for an allocation of an IP address
from a DHCP server. This action can be aborted by pressing CTRL-SPACE.

If ETH_GATEWAY or ETH_DNS has not been set, then depending on the DHCP server
contacted, the gateway and DNS addresses may also be set by this command.

syntax: IPaddress := string_expression

ETH_SETIP [IPaddress]

example: i. ETH_SETIP "192.168.0.10"
 ii. ETH_SETIP address$

iii. ETH_SETIP

6 09/21

ETH_GETIP$
The function ETH_GETIP$ will get the IP Address that was set with the ETH_SETIP command.

syntax: ETH_GETIP$

example: i. PRINT ETH_GETIP$
 ii. a$ = ETH_GETIP$

ETH_SUBNET
ETH_SUBNET will set the subnet mask that the Q68 will use.

syntax: mask := string_expression

ETH_SUBNET mask

example: i. ETH_SUBNET "255.255.255.0"
 ii. ETH_SUBNET a$

ETH_SUBNET$
The function ETH_SUBNET$ will get the subnet mask that was set with the ETH_SUBNET
command.

syntax: ETH_SUBNET$

example: i. PRINT ETH_SUBNET$
 ii. a$ = ETH_SUBNET$

ETH_GATEWAY
ETH_GATEWAY will set the gateway (router) IP address that the Q68 will use.

syntax: IPaddress := string_expression

ETH_GATEWAY IPaddress

example: i. ETH_GATEWAY "192.168.0.1"
 ii. ETH_GATEWAY a$

ETH_GATEWAY$
The function ETH_GATEWAY$ will get the gateway (router) IP address that was set with the
ETH_GATEWAY command, or the ETH_SETIP command.

syntax: ETH_GATEWAY$

example: i. PRINT ETH_GATEWAY$
 ii. a$ = ETH_GATEWAY$

09/21 7

ETH_DNS
ETH_DNS will set the IP address of the DNS server that the OPEN command will use convert a
domain name into an IP address.

syntax: IPaddress := string_expression

ETH_DNS IPaddress

example: i. ETH_DNS "192.168.0.1"
 ii. ETH_DNS a$

ETH_DNS$
The function ETH_DNS$ will get the Domain Name Server IP address that was set with the
ETH_DNS command, or the ETH_SETIP command.

syntax: ETH_DNS$

example: i. PRINT ETH_DNS$
 ii. a$ = ETH_DNS$

ETH_NETNAME
ETH_NETNAME will set the Q68's network name. The network name can be up to 26
characters long.

syntax: netname := string_expression

ETH_NETNAME netname

example: i. ETH_NETNAME "Ethernet Q68"
 ii. ETH_NETNAME a$

ETH_NETNAME$
The function ETH_NETNAME$ will return the network name given by the ETH_NETNAME
command.

syntax: ETH_NETNAME$

example: i. PRINT ETH_NETNAMES$
 ii. a$ = ETH_NETNAME$

ETH_PING
ETH_PING will send up to 4 Ping requests over the network, to the specified IP Address. The
results will be sent to either the specified, or the default channel (#1).

syntax: channel_number := numeric_expression
IPaddress := string_expression

ETH_PING [#channel_number,] IPaddress

example: i. ETH_PING "192.168.0.1"
 ii. ETH_PING#4, a$

8 09/21

ETH_IPCONFIG
ETH_IPCONFIG will list information about the Ethernet controller and driver status to the
supplied channel, or will default to channel #1.

syntax: channel := numeric_expression

ETH_IPCONFIG [#channel]

example: i. ETH_IPCONFIG
 ii. ETH_IPCONFIG #2

iii ETH_IPCONFIG #chan

ETH_ERRNO
The function ETH_ERRNO will return the last driver error that occurred. This is a specific error
number for the Ethernet driver, and is not the same as the QDOS error that may have been
displayed.

If you encounter a QDOS error message while using the driver. It may not be a very helpful
error message, as there are only a limited number of QDOS error messages. Using
ETH_ERRNO may supply you with a more helpful error report. See the list of extended error
messages at the rear of this document.

ETH_ERRNO will return 0, for no current error.

After using ETH_ERRNO, the last error will be cleared.

syntax: ETH_ERRNO

example: i. PRINT ETH_ERRNO
ii. a = ETH_ERRNO

ARP_ADD
ARP_ADD will add an IP Address and MAC Address into the ARP table.

syntax: IPaddress := string_expression
MACaddress := string_expression

ARP_ADD IPaddress,MACaddress

example: i. ARP_ADD "192.168.0.20","01-02-03-04-05-06"
 ii. ARP_ADD address$,mac$

ARP_REMOVE
ARP_REMOVE will remove an ARP table entry. If no parameter is supplied, then all the ARP
table entries will be removed.

syntax: IPaddress := string_expression

ARP_REMOVE IPaddress

example: i. ARP_REMOVE "192.168.0.20"
 ii. ARP_REMOVE

09/21 9

ARP_LIST
ARP_LIST will list all the ARP table entries to the supplied channel, or will default to channel #1.
The list will be in the format, IP Address, MAC Address.

syntax: channel := numeric_expression

ARP_LIST [#channel]

example: i. ARP_LIST
 ii. ARP_LIST #2

iii ARP_LIST #chan

DNS_ADD
DNS_ADD will add a domain name to the DNS cache. The optional, time to live parameter
defines how long in seconds that the entry in the DNS cache remains valid. The default value of
0, meaning permanent.

syntax: domainName := string_expression
IPaddress := string_expression
ttl := numeric_expression

DNS_ADD domainName,IPaddress[,ttl]

example: i. DNS_ADD "www.yahoo.com","87.248.100.216",30*60
 ii. DNS_ADD name$,address$

DNS_LIST
DNS_LIST will list all the entries in the DNS cache to the supplied channel, or will default to
channel #1.
The list will be in the format, Domain name, IP Address, Expiry date. If there is no expiry date,
then 'Never' is used in place of a date.

Note that some expiry dates may be displayed that have expired. The checking for, and removal
of expired entries is only done when the cache is searched to obtain an IP address.

syntax: channel := numeric_expression

DNS_LIST [#channel]

example: i. DNS_LIST
 ii. DNS_LIST #2

iii DNS_LIST #chan

DNS_FLUSH
DNS_FLUSH will remove all the entries from the DNS cache. Except for the local host entry.

syntax: DNS_FLUSH

example: DNS_FLUSH

10 09/21

QPAC2 Channels

If you have an Ethernet channel open. When you look at QPAC2's Channels. Information will be
displayed about the open channel.

The channel information will be displayed in the format, Socket type, Local port number, Peer IP
address, Peer port number

e.g. UDP_53760:172.16.0.9:5800

A UDP connection, of my port 53760, to port 5800 on IP address 172.16.0.9

Supported System Trap Calls

See the UQLX documentation for details of these system traps.

Trap #2
D0 Name Notes

$01 IO_OPEN D3=0-2
$01 IP_ACCEPT D3=LISTENing channel ID
$02 IO_CLOSE

Trap #3
D0 Name Notes

$00 IO_PEND
$01 IO_FBYTE
$02 IO_FLINE
$03 IO_FSTRG

$05 IO_SBYTE
$07 IO_SSTRG D2 is word sized, So should limit data size to 32K

$48 FS_LOAD
$49 FS_SAVE

$50 IP_LISTEN

$51 IP_SEND data size limited to 64K See notes
$52 IP_SENDTO data size limited to 64K See notes
$53 IP_RECV See notes
$54 IP_RECVFM See notes

$58 IP_BIND
$59 IP_CONNECT

$5B IP_GETHOSTNAME
$5C IP_GETSOCKNAME
$5D IP_GETPEERNAME
$5E IP_GETHOSTBYNAME
$5F IP_GETHOSTBYADDR

$64 IP_GETSERVBYNAME
$65 IP_GETSERVBYPORT

$6E IP_GETPROTOBYNAME
$6F IP_GETPROTOBYNUMBER

09/21 11

$72 IP_INET_ATON
$73 IP_INET_ADDR
$74 IP_INET_NETWORK
$75 IP_INET_NTOA
$76 IP_INET_MAKEADDR
$77 IP_INET_LNAOF
$78 IP_INET_NETOF

$7C IP_ERRNO

$7D IP_XINF

Notes:
IP_SEND and IP_SENDTO D1 flag is not supported
IP_RECV and IP_RECVFM D1 flag only supports MSG_PEEK

12 09/21

New system calls

Version 0.30 of the driver introduced a new IP system trap. Note that at the moment, the
operation of this system call is not set, and is lible to change.

IP_XINF TRAP#3 D0=7D

Call parameters Return parameters

D1 D1.W length of block returned
D2.W length of buffer D2.W preserved
D3.W timeout D3.L preserved

A0 channel ID A0 preserved
A1 base of buffer A1 preserved
A2 A2 preserved
A3 A3 preserved

Error returns

NC not complete
NO not open
BO buffer overflow

This system call will return a data block containing information about the settings of the driver.

Note, It requires an open channel. This channel can just be a SCK_, it does not need to be
connected to anything.

On systems other than this driver, some of these entries may be unavailable. It is the
resposibilty of the calling application to examine inf_driverID, inf_driverVer, and inf_compID
to determine which information in the data block is libel to be valid.

System data
$00 inf_ddbase base of driver definition block
$04 inf_driverID driver ID as a 4 byte string e.g. 'Q68E'
$08 inf_driverVer driver version as a 4 byte string e.g. '0.29'
$0C inf_compID computer ID as a 4 byte string e.g. 'Q68 '
$10 inf_mac 6 byte system MAC address
$16 inf_IPadd system IP address
$1A inf_subnet system subnet mask
$1E inf_gateway system gateway/router address
$22 inf_dhcp system DHCP server IP address
$26 inf_dns system DNS IP address
$2A inf_compName word + up to 26 bytes of the system network name
$46 inf_txpackets number of packets sent by the CP2200
$48 inf_txbytes number of bytes sent by the CP2200 *
$4E inf_rxpackets number of packets received by the CP2200
$52 inf_rxbytes number of bytes received by the CP2200 *

Channel data
$56 inf_peerMac 6 byte peer MAC address
$5C inf_peerIP peer IP address
$60 inf_peerPort peer port number
$62 inf_sysPort system port allocated to channel
$64 inf_sckType socket type 1 = TCP, 0= UDP, -1=SCK
$65 inf_protocol channel protocol e.g 17 = UDP
$66 inf_access channel access mode (D3 on open call)
$67 inf_sockStat socket status

$68 inf_end end of extended info block

* The number of bytes sent, or received by the CP2200 includes the header information.

09/21 13

Ethernet driver error messages

If the Ethernet driver encounters a problem, it may store an error message that is more useful
than any QDOS error message that may also be returned.

These error messages may be examined with the ETH_ERRNO function.

There is only ever one error number that is stored, and it is the last error encountered.

After using the ETH_ERRNO function, the error code is reset to zero.

Receive errors
 1 Insufficient memory to read packet into
 2 Read packet validation failed, checksum mismatch
 3 Received packet from unexpected MAC address
 4 Unable to process TCP control bits
 5 Unexpected TCP segment numbers
 6 Unexpected TCP sequence number

 8 Last packet was not transmitted successfully

Send errors
 10 Timeout waiting for transmit buffer to empty
 11 Protocol not found when creating a packet
 12 Failure sending ARP request
 13 Failure sending Ping reply
 14 Attempt to send too many packets with received ACK's (TCP)
 15 Failure sending a SYN,ACK
 16 Too many attempts made to send a packet

Open errors
 20 Invalid parameters for requested OPEN type
 21 No managed ports available
 22 Unable to squire MAC address for specified IP address
 23 Requested port already in use
 24 No response from requested TCP server for a SYN request
 25 Bad port number, or service name supplied
 26 Bad IP address, or Domain name supplied
 27 No colon found in supplied parameters

I/O errors
 30 Error creating checksum for transmission
 31 Attempt to send more than 64K bytes
 32 Bad sockaddr length
 33 Fragmented packet incomplete before life ran out
 34 I/O timeout while waiting for a MAC address
 35 IP_LISTEN queue out of range
 36 Not a TCP channel
 37 Out of memory creating a dummy channel definition block
 38 The queue for a listening channel is full

Close errors
 40 Timed out waiting for a TCP close acknowledgement
 41 While in FIN-WAIT-1, Timed out waiting for an ACK
 42 While in FIN-WAIT-2, Timed out waiting for a FIN (last ACK)
 43 While in LAST-ACK, Timed out waiting for final ACK
 44 Unexpected FIN received
 45 While in CLOSING, Timed out waiting for final ACK
 46 Failed sending a FIN

14 09/21

IP Trap errors
 50 Error reading a database entry

DHCP errors
 60 BREAK pressed during DHCP
 61 DHCP timed out
 62 DHCP lease ran out

DNS errors
 70 No DNS server setup
 71 Timed out waiting for answer from DNS server

CP2200 Initialization errors
100 Timed out while waiting for controller to reset
110 Timed out while waiting for auto-neg in Physical layer

09/21 15

Copyright and Disclaimer

This driver should not cause any problems, damage, or loss of data. However by using this
device driver, you do so at your own risk, and I do not accept responsibility for any damage, or
loss of data.

The driver may contain portions of, or be based on routines from the SMSQ/E source code.
(Although it may be hard to find them)

Licence for SMSQ/E

Copyright (c) 1989-2012, by

 Tony Tebby
 Marcel Kilgus
 Bruno Coativy
 Fabrizio Diversi
 Phoebus Dokos
 Thierry Godefroy
 Jérôme Grimbert
 George Gwilt
 John Hall
 Mark Swift
 Per Witte
 Wolfgang Lenerz

collectively called the "COPYRIGHT HOLDERS".

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

16 09/21

