Be positive

One striking feature of the computer business of the early 1990s is
the way in which even quite large organisations tie themselves to
software development systems or languages which claim to be of universal
or nearly universal application. The most recent of these languages (c)
dates from the 1960s (even ADA was required to be based on a 1960s
language, and ADA is not greatly used except for military software).
Experience has shown that replacing a general purpose language by a
language that closely matches the requirements of a system can save
anywhere between 10% and 80% of the development costs. These savings
come about because the initial designs do not need to be compromised to
fit the language limitations, the specifications are simpler to translate
into programs and the resulting software is intrinsically easier to
commission and more reliable in service.

By comparison with major systems developments, compilers are not
very expensive to write. In particular, the cost of a compiler to create a
language for a specific project is very much less than the cost of a
general purpose compiler. If you have a system for creating compilers
then they become even cheaper. The aim of such a compiler system is to
produce a very high level language which is closely tied to the
application. This enables the application developers to concentrate on
what needs to be done, leaving it to the compiler to create the means.
This is not a fairy-tale idea. It was more than ten years ago that I first
applied this approach to a project. Although the lack of a suitable
compiler generator meant that the high level compiler had to written by
hand, and some "hand compilation" was required. It was a dramatic
success: a high quality, reliable and efficient application was produced by
a team of people whose main experience and skills were in the field of the
application, not the computer.

This "project specific compiler" approach proved to be effective for
projects as small as five man years; with automation of the compiler
generation, it would be suitable for even smaller projects. Such an
automatic system was planned but was never completed because, by this
time, I was no longer convinced that a programming language was an
appropriate way to represent a computer program. :

To my mind, conventional programming systems, based on program
source stored in text files using a (sometimes complex) rigid syntax to
define the meaning of each statement are an anachronism. This type of
system squeezes all the various layers of definitions, commentary, data
and program structures into a linear stream of bytes. So much argument
goes on over the relative merits of different programming languages, that
little attention has been paid to the more fundamental question: is a
programming language the best way of writing and representing a computer
program?

To some extent, programmers try to overcome this one dimensional
restriction by laying out their text in paragraphs with indentation to
highlight the structure. Effectively, this is a one and a half dimensional
representation, although such a layout does not usually have any
"significance": such layouts are purely decorative.

Modern computer displays are not just capable of two dimensional
representations (although even that could be an improvement over the
conventional one dimensional representation or a program) but, by the use
of suitable windowing software, can represent multiple layers of
information. Nor are such displays limited Jjust to characters: the
characters can not only be in various sizes, styles or colours, they can be
complemented with boxes, lines, directed lines and a whole range of

1

graphical symbols.

Doubtless everybody will have their own ideas about the ideal
development environment, but my priorities for a new software
development system are:

Productivity

Representing the user interface
Representing the overall system structures
Internal documentation

Representing the structures for internal, filed and transferred data

Guided access to common facilities
Representation of algorithms

Productivity

It may seem strange to put productivity at the top of the list. But, if
all other factors such as standards of documentation, quality,
functionality and performance of the software are kept constant, then
productivity is a good measure of the effectiveness of the development
system.

More importantly, with all the additional computing power available
now, with all the development tools that can be applied, the most
optimistic estimate of software productivity improvement that I have
seen from major US software developers is that productivity has been
stable for the past ten years. This may be true if the cost per byte is
taken as the basis, but a 1992 byte is, on average, worth much less than a
1982 byte. My own impression is that the decline in productivity has been
dramatic, and, in many cases, it has been accompanied by a parallel decline
in quality.

The reasons are not hard to find. When access to computing
resources was limited, software developers were constrained to spend
most of their time thinking and designing. With easy access, and fast
compilation turnaround, this thoughtful process has tended to be
replaced by a "hack it and see" approach. Attempts to apply strict
methodologies have not always been successful at reversing this
tendency.

Representing the user interface

Historically, for software developed to be accessed directly by a
"uger", the user interface has usually been the weakest part of the
systems. There is no ponint in providing ingenious facilities, unless the
user is able to access them in a coherent, easily understood way.

For applications programs, the facilities provided and the method of
providing them should be derived from the user interface.

NOTE!! User manuals, reference manuals and on-line help are all part
of the user interface and should be conceived, created, and updated all at
the same time.

Representing the overall system structures

However impatient a software developer may be to get in and start
hacking, he or she must be restrained. The development system must only
allow code and structures to be created for those parts of the system
whose interfaces are well defined. This is the point at which a software
development can be safely split into parts to be created separately.

2

There is a second level where development work can always be done,
regardless of the state of the project. Utility software, by its very
nature, is not, and should not be, tied to a particular application.

Internal documentation

The representation of the overall structure is only the first-level of
the internal documentation. The problem with most programming
languages is that the only built-in documentation is the "comment" which
tends to be a bit of an afterthought. Most development organisations
have standards for including appropriate comments at the head of a
routine, and many have software to process these comments into formal
documentation. This is an untidy, unreliable, unsatisfactory bodge. I do
it this way myself: at the moment there is no readily available alternative.

The documentation should, of course, be maintained by the
development system. This enables much closer control over the
documentation, as well as making it easier to create, update and access.

The definition of data structures and the code to process them must
be subsidiary to the documentation and not the other way round.

The descriptions of data structures and routines must be available
where they are used as well as where they defined, In particular, the
descriptions of routines must be parameterised in the same way as
the routine itself, so that a description of routine is appropriate to
the context in which it appears and uses the actual parameter names
rather than the formal parameter names.

The expression of the data structures and the expression of the
code must be explicit and easy to read. The verbosity implied by this
will not adversely effect either the time to create the code or the
size of the source files: an intelligent source file editor will be able
to fill in much of the padding required, and there is no reason to
store the source in character format.

Representing the structures for internal, filed and transferred data

I have spent much of the past ten years designing computer systems,
systems software and applications. In those ten years, I have spent very
little time designing code. Mostly, I have designed the overall
functionality of the system and then the data structures. At this stage,
the code tends to design itself as the code exists merely to maintain the
data structures.

This has turned me into a firm believer in data driven design. This is
possibly the reason for my scepticism over object oriented programming.
For me, code exists solely to maintain data structures or transfer
information from one data structure to another. The code is so intimately
linked to the data that the concept of creating artificial linkages of the
C++ variety seems out of place.

The data structures should be able to incorporate not just the
simple data elements (integers, floats, strings, pointers etc.), which are
supported directly or indirectly by the processor and "normal"
programming languages, but also more complex constructions
("molecules"?). These molecules include such constructions as linked
lists and sets (where the the elements are distributed across a number of
structures) and indirection tables, hash tables, indexes which serve to
hold together, sort or access a collection of structures. There are, of
course, the more mundane molecules such as queues, stacks, buffers and

3

sieves which can form parts of larger structures. Each molecule should,
of course, be defined with its own code to create, process, maintain and
remove the molecule. The system must provide facilities for the creation
of new molecules.

Guided access to common facilities

Standard data structures and their associated code, utility
routines and standardised user interface, communications and database
modules are all candidates for incorporation into applications programs.
Providing a guided tour of such facilities available is essential.

The same guided access must be available for structures and code
defined for a specific application.

This guided access works in two ways. First of all it provides a topic
search for suitable routines, and when using a routine, ensures that all
parameters required (even implicit parameters such as buffer sizes) are
supplied and are of suitable types (selecting if necessary a suitable
variant of the routine). Secondly, where there is a reference to a routine
in the source, the system displays, not a cryptic call to the routine with
parameters, but the description of the routine incorporating the
parameters:

for example copy input string to work buffer in upper case
rather than strcpy_UC (input_string, work_buffer, len_work_buffer)

Used with the conventional compiler, the former would give serious
syntactic problems: effectively the name of the procedure is "copy (string)
weee to (string) ... in upper case". With this new system, however, there is
no problem: the internal representation of the call is a formal (not
textual) representation of the call: strcpy_UC itself provides the visible
form "copy $1 to $2 in upper case" where the development system editor
substitutes the first and second parameters into the text when it is
displayed.

The most important implication of this approach, is that all
definitions of routines (whether called or expanded into inline code) are
maintained using a definition file (which applies to all modules of a
particular project) rather than individual header files for each module,
which may, by accident or design, have different definitions in different
modules, It also implies that the cross referencing of modules is
maintained by the source editor of the development system, rather than
the compiler, linker or loader. Cross referencing is, therefore, always
available and always up to date.

Representation of algorithms

Classically, the representation of algorithms has been in "code'".
For most of the world, something written in code is intended to be
incomprehensible. The source code of computer programs has always had a
tendency to be incomprehensible, whether intentional or not. In the old
days, every character of the source had to be typed or punched. This
encouraged cryptic constructions., So many identifiers were used on large
developments that the name itself was frequently buried in a host of
gualifiers giving the usage, the author and other useful information. With
a development system which can keep track of all these things for you, and
which can expand identifiers from a few keystrokes as they are typed,
there is no need to encrypt identifiers.

.

Gy :

The same improvements can be made to the syntax of programming
structures. If the source is not maintained as a character file, then we
can put an end to obscure syntax. Each form of structure has its own
distinctive window. The conditional action window (IF) has a region for the
condition and a region for the conditional actions. Windows
corresponding to the ELSEs and ELSEIFs of conventional programming
languages are treated as repeated sections of the conditional window: in
such a structure, it is impossible to become confused as to which ELSE
belongs to which IF. Other standard structures are treated in an
analogous way, but, because they do not need to be expressed in written
syntax, are freed from many of the arbitrary restrictions typical of
conventional programming languages,

To avoid not being able to "see the wood for the trees", which is a
problem inherent in structured programming where there are more than
two or three levels of nested structures, the content of a program
structure (including any nested structures) is first displayed as a simple
descriptive text. This text can be expanded into the full description of
the structure as required, thus revealing the next level of structures
down. Any section of a programming module can, therefore, be viewed (or
printed) in any level of detail desired.

Common operations can be collected into procedures, but, unlike
conventional languages, the appearance of a call to a procedure is defined
by the procedure itself, not the programming language.

Other requirements

To meet the needs of those unfortunate enough to have to work with
more than one architecture of computer, there are two other
requirements.

The first is the support for optional sections of program which are
only linked into programs when the option is required. The second is for
assembly language routines, where the algorithms are expressed in
pseudo-code and for each pseudo-code statement there is one or more
assembly language statements for each processor supported. This latter
facility helps to ensure that all processor versions are updated at the
same time,

Side effects

Because the meaning of a program does not have to be forced into a
textual form but is stored as a formal representation, the appearance of a
program on the display, or when listed, can be in any language, English,
French, German or even Japanese. For this reason, utility routines need
to be supplied not only with appropriate translations of the words used in
the call to the routine, but different syntaxes for the call as well.

Replies please,

What is wrong with your present software development environments?

Would a visual multi-layer representation of a software system be valuable?

How would YOU do it?

How much would you pay for it?

o

