
Q68 Ethernet driver notes Version 0.22

SuperBASIC extensions
-----------------------------
ini_cmd SuperBASIC Procedure definition list

eth_init SuperBASIC Procedure ETH_INIT to (Re)Initialize the CP2200 Ethernet controller
Assuming that the Ethernet device driver was installed, an attempt is made to 
initialize the CP2200 again

feth_init SuperBASIC Function FETH_INIT of the above Procedure. 
Returns, 0 for OK
'Not Complete' for initialization timed out.
'Transmission error' for Auto-negotiation failed.
'Not Found' for uninitialized driver.
'Bad Parameter'

eth_macs SuperBASIC Function ETH_MAC$ to return the MAC address of the CP2200 as a
dash seperated string.
'Not Found' for uninitialized driver.
'Bad Parameter'

arp_add SuperBASIC Procedure ARP_ADD to add, or update an arp table entry.
MACaddress in the format "aa-bb-cc-dd-ee-ff"

arp_remove SuperBASIC Procedure ARP_REMOVE to removes one or all ARP table entries
from the linked list.
Without parameters, removes all entries

arp_list SuperBASIC Procedure ART_LIST to lists all ARP table entries to #ch or default #1.
In the form, IP Address     MAC Address

eth_setip SuperBASIC Procedure ETH_SETIP to set the Q68's IP address in the device
definition block

eth_subnet SuperBASIC Procedure ETH_SUBNET to set the Q68's subnet mask in the device
definition block

eth_gateway SuperBASIC Procedure ETH_GATEWAY to set the Q68's default gateway IP address
in the device definition block

setip Routine used by ETH_SETIP, ETH_SUBNET, and ETH_GATEWAY to do the setting of the
IP addresses

         
eth_fgetip SuperBASIC Function ETH_GETIP$ to return the set IP address as a dot separated

string

eth_fsubnet SuperBASIC Function ETH_SUBNET$ to return the set IP address as a dot separated
string

eth_fgateway SuperBASIC Function ETH_GATEWAY$ to return the set IP address as a dot separated
string

1



getip Routine used by ETH_GETIP$, ETH_SUBNET$, and ETH_GATEWAY$ to return the
actual strings

         
eth_netname SuperBASIC Procedure  ETH_NETNAME to set the Q68's network name

eth_fnetname SuperBASIC Function ETH_NETNAME$ to return the Q68's network name as a string

eth_errno SuperBASIC Function ETH_ERRNO to return the last driver specific error. This is not
the same as a QDOS error, But an error code to indicate the last problem the driver
encountered. ETH_ERRNO will clear the error code after it is read.

eth_ping SuperBASIC Procedure ETH_PING. Sends 4 Pings to the supplied IP Address, Sending
the results to the specified channel, or #1.

get1int Fetch one Procedure/Function parameter integer and place it on the maths stack

get1str Fetch one Procedure/Function parameter string and place it on the maths stack

2



Subroutine list
-------------------
cp2200_init Initialize the CP2200 Ethernet controller.

Entry
A3 Assumed start of driver definition
Exit
D0 error return. Possible errors -

Not complete = Self Initialization timed out
Transmission error = Auto-negotiation failed

cp2200_mac Initializing the MAC of the CP2200
Entry
A1 points at the base address of CP2200 registers
A3 points at the definition of the device driver

cp2200_phlay
Initialize the Physical Layer of the CP2200
Entry
A1 points at the base address of the CP2200
Exit
D0 error return. Possible errors -

Transmission error, Self Initialization timed out

cp2200_WritePacket
Write a packet to the Ethernet controller
Entry
D2.W  number of bytes to send
A1    base of buffer
A2    base of CP2200 Ethernet controller
A3    base of device driver definition block

Exit
D0    0 or QDOS error code

buffer full                   transmit buffer is not empty, after waiting 1.5 sec
transmission error      if the last packet was not transmitted successfully

D2    preserved
A1    updated pointer to buffer

add_arp_rec Adds, or updates a record in the ARP table
Entry
D5.L     top four bytes of the MAC address
D6.W   bottom two bytes of the MAC address 
D7.L     IP address
A3        base of device driver definition block
Exit
D0        0, or 'out of memory'

3



allocateport Allocate a free port from the managed table of ports. OPEN_IN and Binding 
requires a system selected port. This port will be selected from a pool of 256
ports between $D200 to $D300
The allocation is managed from a 32 byte port allocation map, where each bit
identifies a port as being free (0) or in use (1)
There is a rotating port number pointer that is incremented each time a port is 
allocated. So if a port is used, then released, it will not be used again immediately.
Entry 
D4   upper word is port supplied to the OPEN routine
A3   base of driver definition block
Exit 
D0   error return. Possible errors -

Buffer full, no ports available
D4   lower word, selected port

check_IP_address
Checks the supplied IP address, If it's not on the local LAN, and a Default gateway has
been set, then use the Default gateway IP address
Entry 
D0    IP address of required computer
A3    base of driver definition block
Exit
D0    preserved, or the Default gateway IP address

arp_ip_request
Request a MAC address from a remote computer with the supplied IP address
Entry 

    D7   IP address of required computer
A1   base of buffer
A3   base of driver definition block
Exit
D0   0 or QDOS error code

buffer full         transmit buffer is not empty, after waiting 1.5 seconds
transmission error  if the last packet was not transmitted successfully

 A1   updated pointer to buffer

check_mac_address
Scan the ARP table to see if we know the MAC address for the IP address in D0
Entry
D0   IP address of required computer
A3   base of driver definition block
Exit
D0   preserved

zero flag not set if successful, and
D5.L   upper part of MAC address
D6.W   lower word of MAC address

4



check_open_valid
Checks to see if the required OPEN command can proceed
Table for determining which OPEN commands are valid. The table takes the form of
four bytes for disconnected from network and four bytes for connected to network. 
Each four bytes are for OPEN, OPEN_IN, OPEN_NEW, spare (OPEN_OVER)
Return values are 0, invalid parameter, transmission error
or format failed for an undefined open type .
Entry 
D7   lower word, is open type
A4   supplied IP address
Exit
D0 0, or an error code
Table for determining which OPEN commands are valid. The table takes the form of
four bytes for disconnected from network and four bytes for connected to network. 
Each four bytes are for OPEN, OPEN_IN, OPEN_NEW, spare (OPEN_OVER)
Return values are 0, invalid parameter, transmission error
or format failed for an undefined open type

checksetport If supplied port number is in the range $D200 to $D300, and if already
allocated. If so returns an 'in use' error. Otherwise flags port as in use
Entry
D3.W port to allocate
A3   base of driver definition block
Exit
D0   0, or 'In Use' error

cp_aneg Do auto-negotiation of the CP2200    +++++ unfinished ++++
Entry
A1 points at the base address of CP2200 registers
Exit
D0 error return. Possible errors -

Transmission error, Self Initialization timed out

ddlink Get the assumed start of Q68Net Driver Definition Block in A2, or set the zero flag
for not found.

deallocateport De-allocate a port from the managed table of ports, If in the a pool of 256 ports
between $D200 to $D300
Entry 
D0.W port to de-allocate
A3   base of driver definition block
Exit 
none

5



fetchpacket Look to see if there is a packet waiting in the channels queue to be accessed. If so,
check to see if it has yet to read, or has already been read. Linking in the next if
needed. Otherwise return 'not complete'. Returns a 'transmission error' on a wrong 
MAC address.
Must be in supervisor mode, and A6 pointing to the system variables.
Entry
A0    start of channel definition
A3    base of driver definition block
A6 base of system variables
Exit
D0    0, or an error code

get_cdb Convert a channel ID in A0 to a pointer to the base of the channel definition block.
Entry 
A0    Channel ID
Exit 
A0    Points to base of channel definition block
D0   Zero, or Channel not open error

get_lang Get the system language, and return as English, French, or German in D0
Exit
D0 001 for English(US)

044 for English(UK)
049 for German
033 for French
039 for Italian 

init Create a device driver definition block, Initialize the CP2200.
If successful link the block into the system

int_serve Interrupt handler for reading data packets in supervisor mode on entry 
Entry
D3  number of 50/60Hz interrupts
A3  base of driver definition block
A6  base of system variables
A7  supervisor stack (64 bytes free)
Exit 
everything preserved

is_assign Try to identify the type of packet received, and assign it to a channel, or throw it
away
Entry
A0    points to the start of the buffer
A3    base of driver definition block

lang_search Search the language table. Returns a pointer to the start of the required language
line in the language table. If language code is not found, it defaults to English
Entry
D0     language code
Exit
A4     points at start of language table entry

6



localWritePacket
Try to write the packet to the local host directing it to the correct open IP channel
Entry 
D2.W  number of bytes to send
A0    points at the channel definition block
A1    base of buffer
A3    base of driver definition block
Exit
D0    0 or QDOS error code

transmission error  if there was a memory problem
D1.W  number of bytes sent
D2    preserved
A1    updated pointer to buffer

nd_close Device driver channel close routine

nd_io    Device driver I/O routines 

nd_open Device driver channel open routines for UDP, TCP and SCK channels
(TCP not fully implemented as yet)

nd_getmac Check to see if the ARP table has been updated with the required MAC address. 
If ARP table has not been updated, another ARP request is sent at the half time point,
and at the timeout.
Note this is not a subroutine, may not return to caller
Entry 
D0    operation
A3    base of driver definition block
Exit 
D0 preserved, or an error code

nd_gen_trans_csum
Generate a Transport layer checksum for the block of data pointed to by A1, 
Length D2.W
Also creates the transport layer header in the channel definition block ready
for sending
Entry
A0    base of channel definition block
A1    points at the start of the data block
A3    base of driver definition block
D2.W  number of bytes in data block
Exit
D0.W The required checksum
Zero flag set on an error

7



ndo_getbyte
ndo_getword Read a device name parameter, Converts an ASCII string into a number in D7

Entry
D5 number of digits to read
A4 pointer to start of ASCII number
Exit
D7 ndo_byte - byte value
     ndo_word - unsigned word
zero flag not set on error

nstr2long Check the IP address of a null terminated string, returning it as a long word in D7
Uses the str2long routine
Entry
D0 length of string
A2 Pointer to end of string
Exit
D0   0, or QDOS error code

Bad Parameter
D7   IP address in network order

send_mac_request
Send a request on the network for a MAC address for the IP address in D0
Entry 
D0   IP address of required computer
A3    base of driver definition block
Exit  
D0    0 or QDOS error code

buffer full         transmit buffer is not empty, after waiting 1.5 seconds
transmission error  if the last packet was not transmitted successfully

str2long Converts an IP address string on the Maths stack and return it as a long word in
D7
Entry
A1   Pointer to Maths stack
Exit
D0   0, or QDOS error code

Bad Parameter
D7   IP address in network order

str2mac Check the MAC address QDOS string on the Maths stack and return it as a long 
word in D5 & a word in D6
The string should be in the format "aa-bb-cc-dd-ee-ff"
Entry
A1   Pointer to Maths stack
Exit
D0      0, or Bad Parameter
D5.L   Top four bytes of MAC address
D6.W Bottom two bytes of MAC address

8



tcp_accept Deal with an IP_ACCEPT. Accept a connection for a socket specified by the channel ID
supplied in D3 
Entry
D3    channel ID of LISTENing channel
D6    upper word is open type
A0    start of device name - must be a SCK_
A3    base of driver definition block
A5    base of driver definition block
A6    base of system variables
Exit
D0    0, or an error code
A0    base of channel definition block

tcp_close Do a TCP close connection sequence
Entry
A0    base of channel definition block
A3    base of driver definition block
A6    base of system variables
Exit  none

tcp_connect Attempt to make a Three Way Handshake connection to a TCP server that is Listening
for connection requests.
Returns 'Transmission error' if a connection cannot be made
This routine may be called from either the OPEN routine, or IP_CONNECT
Entry
A0    base of channel definition block
A3    base of driver definition block
A6    base of system variables
Exit
D0    0, or an error code ????

uh_alloc Allocate an area in a user heap
Entry
D1  required space on the user heap
A0  pointer to pointer to pointer to free space in user heap
Exit
D1  length allocated
A0  base of user heap area allocated
D0  0, or 'Out of memory'

uh_setup Assign and set up a new User Heap
Entry
D1   required space for the user heap
A1   pointer to pointer to pointer to free space in user heap
A2   pointer to address to store base of allocated area
Exit
A0    undefined
(A1) pointer to pointer to free space in user heap 
(A2) base of common heap allocated
D0    0, 'Out of memory' or 'job does not exist'

9



uh_rechp Release an allocated area in a user heap
Entry
A0  base of space to free
A1  pointer to pointer to free space in user heap
Exit
A0  undefined
A1  undefined

valIPV4hdr Validate an IPV4 network header by its checksum
Entry
A0    base of packets buffer
A3    base of driver definition block
Exit
D0    error return

valICMPhdr Validate an ICMP transport header by its checksum
Entry
A0    base of packets buffer
A3    base of driver definition block
Exit
D0    error return

valTCPhdr Vaildate a TCP transport header by its checksum
Entry
A0    base of packets buffer
A3    base of driver definition block
Exit
D0    error return

valUDPhdr Vaildate an UDP transport header by its checksum
Entry 
A0    base of packets buffer
A3    base of driver definition block
Exit
D0    error return

10



writepacket Adds the required headers to the payload in the transmit buffer, and writes it
to the CP2200 for transmission
Entry
A0    base of channel definition block
A3    base of driver definition block
Exit
D0    0 or QDOS error code

There are also some other entry points into wtitepacket in addition to A0 & A3 above

translayer_udp, translayer_tcp, translayer_icmp
On entry D2.W is the number of bytes in the payload

   A1 is a pointer to the start of the payload

   (D1-D4 may be smashed)

netlayer_ip D2 is the number of bytes in the payload
A1

phylayer D2
A1

11



Supported System Trap calls
-----------------------------------
Trap #2

D0 Name Notes
-------------------------------------
$01 IO_OPEN D3=0-2
$01 IP_ACCEPT D3=LISTENing channel ID
$02 IO_CLOSE

Trap #3

D0 Name Notes
-------------------------------------
$00 IO_PEND
$01 IO_FBYTE
$02 IO_FLINE
$03 IO_FSTRG

$05 IO_SBYTE
$07 IO_SSTRG D2 is word sized, So should limit data size to 32K

$48 FS_LOAD
$49 FS_SAVE

$51 IP_SEND data size limited to 64K
$52 IP_SENDTO data size limited to 64K
$53 IP_RECV
$54 IP_RECVFM

$58 IP_BIND
$59 IP_CONNECT

$5B IP_GETHOSTNAME
$5C IP_GETSOCKNAME
$5D IP_GETPEERNAME

$64 IP_GETSERVBYNAME
$65 IP_GETSERVBYPORT

$6E IP_GETPROTOBYNAME
$6F IP_GETPROTOBYNUMBER

$72 IP_INET_ATON
$73 IP_INET_ADDR
$74 IP_INET_NETWORK
$75 IP_INET_NTOA
$76 IP_INET_MAKEADDR
$77 IP_INET_LNAOF
$78 IP_INET_NETOF

$7C IP_ERRNO

12



Device Driver Definition Block
-------------------------------------
$00 ndd_eilk link to next external interrupt
$04 ndd_eiro address of external interrupt routine
$08 ndd_5ilk link to next 50/60Hz interrupt
$0c ndd_5iro address of 50/60Hz interrupt routine
$10 ndd_silk link to next scheduler interrupt
$14 ndd_siro address of scheduler interrupt routine
$18 ndd_ddlk link next device
$1c ndd_iolk link to I/O routine
$20 ndd_oplk link to open routine
$24 ndd_cllk link to close routine

$28 ndd_pmptr Port map pointer, increments after each allocation
$2A ndd_last_err Last IP error, cleared after reading
$2C ndd_chlist Link to list of open IP channels
$30 iod_cnam Pointer to routine to make the channel name (QPAC2)
$34 ndd_ipid Network (IPV4) layer identification. Increments for every packet sent
$36 ndd_q68e Q68 Ethernet identity string
$3a ndd_base base address of CP2200 direct registers
$3e ndd_etir Q68 Ethernet interrupt register
$42 ndd_mac 6 bytes of the MAC address of the CP2200
$48 ndd_ip IP address of this computer
$4C ndd_subnetmask IP subnet mask
$50 ndd_gateway default gateway IP address
$54 ndd_netname computers network name. word + up to 26 characters
$70 ndd_arp start of ARP table of MAC to IP addresses
$74 ndd_queue_base base of packet queue user heap
$78 ndd_queue_p2p pointer to the pointer to the user heap free space (packet queue)
$7C ndd_arp_base base of ARP table user heap
$80 ndd_arp_p2p  pointer to the pointer to the user heap free space (ARP table)
$84 ndd_portmap 32 byte port allocation map
$A4 ndd_buffer 1514 byte buffer for interrupt routine packet handling, or other 

buffering
ndd_endi ndd_buffer+1514 End of definition block
ndd.leni ndd_endi-ndd_eilk Length of definition block

ARP table linkage block
-------------------------------
$08 arp_next pointer to next link
$0C arp_ip IP address
$10 arp_mac 6 byte MAC address
$16 arp_free 2 spare bytes
$18 arp_end end of entry

13



Channel Definition Block
-------------------------------
$18 2 spare bytes
$1A nd_ARPtmr ARP request timeout
$1E nd_MACbad when set, The destination MAC address is bad, $7F after 20 sec
$1F 1 spare byte
$20 nd_destmac destination MAC address
$26 nd_desip destination IP address
$2A nd_destport  destination IP port
$2C nd_myip my IP address - used for BINDing a channel
$30 nd_myport my IP port
$32 nd_devicetype device type -1=SCK, 0=UDP, 1=TCP
$33 nd_protocol device protocol - eg 17 for UDP
$34 nd_acces  access mode (D3 on open call)
$35 nd_sock_state socket status
$36 nd_flagsOffset IPV4 flags and offsets
$38 nd_sequence TCP sequence number
$3C nd_acksequence TCP acknowledge sequence
$40 nd_offsetResFlags UDP flags and offsets : TCP flags and things - needs sorting
$42 nd_windows TCP windows - needs sorting
$44 nd_urgent TCP urgent - needs sorting
$46 nd_tcp_opt_len length of option part of TCP header
$48 tcb_SND.UNA  oldest unacknowledged sequence number
$4C tcb_SND.NXT next sequence number to be sent
$50 tcb_SND.WIN send window size
$52 tcb_RCV.NXT next sequence number to be received
$56 tcb_RCV.WND  receive window size
$58 nd_SEG.ACK next sequence number expected by the receiving host
$5C nd_SEG.SEQ first sequence number of a segment
$60 nd_SEG.LEN the number of octets of data in the segment
$62 nd_SEG.LAST last sequence number of a segment  SEG.SEQ+SEG.LEN-1
$66 tcb_mss host maximum segment size
$68 tcb_ws window scale
$69 tcb_TCP_STACK TCP SACK permitted true/false
$6A nd_TCP_packcount the number of packets to send before waiting for an ACK
$6B nd_listenQ length of IP_LISTEN backlog queue (LISTEN channel only)

8 spare bytes
$74 nd_ddbase assumed start of device definition block
$78 nd_nextch link to next open IP channel
$7C nd_packqueue  link to linked list of received queued data packets
$80 nd_txptr transmit buffer pointer running pointer
$82 nd_txendptr transmit buffer end pointer
$84 nd_rxptr receive buffer pointer running pointer
$86 nd_rxendptr receive buffer end pointer
$88 nd_rxdatabase  address of start of current rx packet's payload
$8C nd_txbufferbase transmit buffer base (transmit header area)

nd_txdatabase  nd_txbufferbase + 78 bytes         Start of transmit buffer data area
nd_int_reply pointer to end of transmit buffer for interrupt routine
nd_chend  nd_txdatabase + 1600 bytes End of channel definition block

14



The end of the channel definition block, from nd_txbufferbase onwards is used as the transmit buffer 
for the channel. The data packet is composed in this area.

There are two pointers, nd_txptr and nd_txendptr, used to track the current data position and the 
end of the available buffer space.

   ----------------------------------------    <----- nd_txbufferbase
| TX header area | This area is reserved for the Ethernet headers
| |
   -----------------------------------------    <----- nd_txdatabase
| | This is the actual payload data area
| TX buffer area |
| |
   ---------------------------------------
| | This is a buffer area for the interrupt routines
| Interrupt TX | Used to send ACK's and FIN's
| buffer area |
   ----------------------------------------   <----- nd_int_reply
| |
| 10 spare bytes | 10 bytes of wriggle room
| |
   ---------------------------------------- <----- nd_chend End of channel definition block

Dummy channel definition block
-------------------------------------------
A dummy channel definition block (in the user heap) is used by LISTEN to handle the 3 way 
handshake of a connection request. This dummy channel definition block is the same as a normal 
channel definition block, only shorter. It has a small transmit buffer area, as it only has to send a 
SYN,ACK.

The dummy channel definition block is is linked into a list of connection requests maintained by the 
LISTENing channel. And also the linked list of open IP channels.

When IP_ACCEPT, accepts the established connection, then the dummy channel definition block is 
unlinked from the two lists, and copied into the real channel definition block, and the dummy one is 
then deleted.

Some channel definition block entries are re-tasked for the dummy channel definition block

$00 dmy_base 8 byte user heap header (don't touch)
$08 dmy_next link to next dummy channel definition block

dmy_owner nd_ARPtmr long     address of owner listing channel

15



PING
-------
 Some channel definition block entries are re-tasked for ICMP, Ping

Normal Re-assignment
--------------------------------------------------------------------------------------------------
nd_ARPtmr ping_timeout long     time to wait for ping reply
nd_sequence  ping_ident word    ping identifier
nd_sequence+2 ping_sequence word    ping sequence number
nd_acksequence ping_startTime long    start time for loop travel time
nd_urgent ping_type byte    ICMP transport layer type
nd_window ping_ttl word    Time To Live
nd_txdatabase+$40 ping_myIPtext 20 bytes   my IP address as a string
nd_txdatabase+$54 ping_gatewayIPtext 20 bytes   default gateway IP address as a string
nd_txdatabase+$68 ping_targetIPtext 20 bytes   target IP address as a string
nd_txdatabase+$7C ping_TTLtext 8 bytes     time to live as a string
nd_txdatabase+$84 ping_triptimes  4 words    4 trip times in ms
nd_txdatabase+$8C ping_received  word     number of received reply's

Receive data buffering
-----------------------------
The CP2200 Ethernet controller can only buffer up to 4K bytes of received data, or up to 8 data 
packets. Whichever come first.

There is an interrupt routine that constantly monitors the Ethernet controller for data packets being 
received.

The basic operation of the routine is that, If the reception of a data packet is detected, Then a buffer 
is allocated in memory, and the data packet is copied into it.

The content of the packet is then examined, and a scan of the opened IP channels is made to see if 
the packet is intended for one the open channels. If a match is found, then the data packets buffer is 
linked onto the end of a queue of data packets intended for that channel.

If no match can be found, or the routine does not know what to do with the received packet, Then 
the buffer is deleted, throwing the data packet away.

Receive buffer format
-----------------------------

$00 rxp_base heap allocation header, don't use (8 bytes)
$08 rxp_next link to the next receive data buffer
$0C rxp_datastart offset from start of buffer to start of payload
$0E rxp_datalen length of payload data
$10 rxp_lifetime number of read attempts left. If 'rxp_ok2read' is not true, then this is the

number of times the channels I/O (timeout) will try to read this packet before
it gives up and deletes the incomplete fragmented packet

$12 rxp_ok2read true if the packet is ready to be read. False if the packet is an incomplete
fragmented packet

$13 rxp_sockstate status of packet for server connection
$14 rxp_start start of the data packet

16



Managed port area
-----------------------
Sometimes the driver has to choose a port to receive data on. Rather than try to manage all 65536 
ports, and to try to keep the load on the system resources down, the driver will only pick ports from a
managed area. It uses a pool of 256 ports, from $D200 to $D300. There is a 32 byte port map in the 
driver definition block 'ndd_portmap', where each bit represents one of the 256 ports.
This does not mean that you cannot uses ports outside of this area. It just means that the driver will 
not accidentality try to reuse a port in this area, that is already in use.

Each time a port is allocated from the managed port area, a pointer 'ndd_pmptr' is incremented to 
prevent a port being used twice in a row.

The following diagram shows the relationship between the port map and the addresses
A bit set to '1' indicates that the port has been allocated.

       Byte 1 Byte 2

2D07 2D0F
2D06 2D0E
2D05 2D0D
2D04 2D0C

X   X  X  X  X   X  X  X X  X  X  X  X  X  X  X

2D00 2D08
2D01 2D09
2D02 2D0A
2D03 2D0B

17



Background packet reading routine   (INT_SERV)
--------------------------------------------------------------
The interrupt driver background reading routines are responsible for reading data packets from the 
CP2200 Ethernet controller. Analyse them, act on, or allocate the data packet to a channel.

The background packet reading has to operate autonomously with no direct feedback to the user of 
any problems. The only feedback is via the ETH_ERRNO S*BASIC function. Whenever the background 
packet reading routines, don't know what to do with a data packet, it just quietly throws it away.

The background packet reading is handled by both the 50/60Hz interrupt, and a hardware interrupt. 

When an interrupt occurs, A test is made to see if a data packet is available in the CP2200 Ethernet 
controller. If there is no data packet available, then the interrupt ends (is_leave).

If a data packet is available (is_dopacket). A buffer is allocated in the 256K user heap, and the data 
packet is copied from the CP2200 Ethernet controller to the user heap.

The type of the data packet is now tested in (is_assign). If it is an ARP request it is dealt with in 
(is_doarp). If it's an IP packet, it is dealt with in (is_doip). Otherwise the data packet is just quietly 
thrown away (is_delpacket).

ARP requests   (IS_DOARP)
-----------------------------------
The ARP packet is examined to see if it's a reply to a request we made, A request for a MAC address, 
or a general announcement that a computer has joined the network.

The appropriate action is preformed. Either store the supplied MAC address in the ARP table user 
heap, or send an ARP packet with the Q68's MAC address to the requester.

The ARP packet is then deleted.

IP packets   (IS_DOIP)
-----------------------------
The packets protocol is checked to see if it is either, UDP (is_doudp), ICMP (is_doicmp), or TCP 
(is_dotcp).

UDP packets   (IS_DOUDP)
-----------------------------------
The packet is checked to see if it fragmented. If this is the first fragment of a group, then a new data 
packet is created in the user heap that is large enough to hold all the fragments of the group. And as 
further fragments arrive, they are inserted into this new packet. So you end up with one complete 
packet for the whole group of fragments.

A search is made of all the open IP channels looking for match of protocols and ports. If a channel is 
found, then the packet is added to the end of a linked list of packets waiting to be read.

TCP packets   (IS_DOTCP)
---------------------------------
A search is made of all the open IP channels looking for match of protocols, IP addresses and ports.  If
a channel is found, the TCP flags are analysed to decide what kind of TCP packet it is (is_tcp_decode).

Depending on these flags, and the status of the connection. Different actions take place. The actions 
may result in the packet being added to the end of the linked list of packets waiting to be read by a 
channel. Or data packets being created and sent back to the sender.

18



ICMP packets  (IS_DOICMP)
-------------------------------------
If the packet is a Ping request (is_ping_req), Then the request is patched into a reply and sent back to 
the sender.

If the packet is a Ping reply (is_ping_reply) from the ETH_PING command, Then the requesting 
SMSQ/E channel is found. The round trip time is calculated in 25nS intervals, and saved in case there 
are any delays before getting back to S*BASIC. The packet is then linked to the SMSQ/E channel to be 
dealt with by the ETH_PING S*BASIC command.

Any other ICMP packets are discarded.

19



TCP Support
----------------

There is a pseudo TCP implementation in this driver. With very little TCP error handling. So all data 
packets must arrive complete and in the right order. 

TCP name meanings
---------------------------

MSS - Maximum Segment Size

MTU - Maximum Transfer Unit

TCP Protocol Operation   (Parts taken from Wikipedia)
-------------------------------

TCP protocol operations may be divided into three phases. Connections must be properly established 
in a multi-step handshake process (connection establishment) before entering the data transfer 
phase. After data transmission is completed, the connection termination closes established virtual 
circuits and releases all allocated resources. 

A TCP connection is managed by an operating system through a resource that represents the local 
end-point for communications, the Internet socket. During the lifetime of a TCP connection, the local 
end-point undergoes a series of state changes:

LISTEN 
(server) represents waiting for a connection request from any remote TCP and port. 
SYN-SENT 
(client) represents waiting for a matching connection request after having sent a connection request. 
SYN-RECEIVED 
(server) represents waiting for a confirming connection request acknowledgement after having both 
received and sent a connection request. 
ESTABLISHED 
(both server and client) represents an open connection, data received can be delivered to the user. 
The normal state for the data transfer phase of the connection. 
FIN-WAIT-1 
(both server and client) represents waiting for a connection termination request from the remote 
TCP, or an acknowledgement of the connection termination request previously sent. 
FIN-WAIT-2 
(both server and client) represents waiting for a connection termination request from the remote 
TCP. 
CLOSE-WAIT 
(both server and client) represents waiting for a connection termination request from the local user. 

20

Phy header IP header TCP header Payload Checksum



CLOSING 
(both server and client) represents waiting for a connection termination request acknowledgement 
from the remote TCP. 
LAST-ACK 
(both server and client) represents waiting for an acknowledgement of the connection termination 
request previously sent to the remote TCP (which includes an acknowledgement of its connection 
termination request). 
TIME-WAIT 
(either server or client) represents waiting for enough time to pass to be sure the remote TCP 
received the acknowledgement of its connection termination request. [According to RFC 793 a 
connection can stay in TIME-WAIT for a maximum of four minutes known as two maximum segment 
lifetime (MSL).] 
CLOSED 
(both server and client) represents no connection state at all.

Keys used by the driver for socket status
-----------------------------------------------------
0 sts_none
1 sts_listen LISTEN
2 sts_syn_sent SYN-SENT
3 sts_syn_recv SYN-RECEIVED
4 sts_estab ESTABLISHED(c & s) connection is established
5 sts_fin_wait1 FIN-WAIT-1
6 sts_fin_wait2 FIN-WAIT-2
7 sts_close_wait CLOSE-WAIT
8 sts_closing CLOSING
9 sts_last_ack LAST-ACK
10 sts_time_wait TIME-WAIT
11 sts_closed CLOSED

Connection establishment

To establish a connection, TCP uses a three-way handshake. Before a client attempts to connect with 
a server, the server must first bind to and listen at a port to open it up for connections: this is called a 
passive open. Once the passive open is established, a client may initiate an active open. To establish a
connection, the three-way (or 3-step) handshake occurs: 

1. SYN: The active open is performed by the client sending a SYN to the server. The client sets 
the segment's sequence number to a random value A. 

2. SYN-ACK: In response, the server replies with a SYN-ACK. The acknowledgement number is 
set to one more than the received sequence number i.e. A+1, and the sequence number that 
the server chooses for the packet is another random number, B. 

3. ACK: Finally, the client sends an ACK back to the server. The sequence number is set to the 
received acknowledgement value i.e. A+1, and the acknowledgement number is set to one 
more than the received sequence number i.e. B+1.

At this point, both the client and server have received an acknowledgement of the connection. The 
steps 1, 2 establish the connection parameter (sequence number) for one direction and it is 
acknowledged. The steps 2, 3 establish the connection parameter (sequence number) for the other 
direction and it is acknowledged. With these, a full-duplex communication is established. 

21



3 way handshake
-----------------------

Client side Server side
status status

CLOSED CLOSED

SYN-RECEIVED

     ESTABLISHED

ESTABLISHED

Connecting to a server
------------------------------
Connecting to a server involves the SMSQ/E Open channel routine calling the 'TCPCONNECT' routine.

This routine will try to make a 'Three Way Handshake' connection to a TCP server that is 'Listening' for
connection requests. 

At this point, as far as SMSQ/E is concerned, The channel has not yet been opened, so no normal I/O 
requests can be processed. The area that will be the channel definition block is loaded with data to 
send a SYN message, and then sends it.

The routine then waits for the interrupt driven background packet reading routines to receive the 
SYN,ACK message. This is handled by the 'IS_TCP_DECODE' routine, which sets the socket status byte 
in the channel definition block (nd_sock_state) to 'ESTABLISHED'

The routine then sends an ACK message, completing the connection.

Server accepting a connection
----------------------------------------
The server has a 'Listening' channel that waits for incoming connection requests. When a 'SYN' is 
received by the background packet reading routines, for a listening channel. Then a dummy channel 
definition block is created to handle the 3 way handshake (is_sendSYNACK). This dummy channel 
definition block is then added to a list of queued requests, and the linked list of open IP channels.

When an IP_ACCEPT system trap is called (tcp_accept), the request queue of the supplied listening 
channel is scanned for the oldest queued request of dummy channel definition blocks. This dummy 
block is then unlinked, and a new channel definition block (that will be the real one) is created. Data 
is copied from the dummy block to the real one, and the dummy block is then removed.

22

SYN  0,x

SYN,ACK  0,1

ACK  1,1



Closing a connection
---------------------------
Closing a connection involves a '4 way handshake', or a '3 way handshake' process. It's a bit more 
complicated than making a 'connection', and involves the socket (channel) going through a number of
states. Depending on which side initiates the close. And one side may leave a channel open as far as 
SMSQ/E is concerned.

Below is shown the sequence of messages to terminate a TCP connection. As taken from the TCP 
Wikipedia page.

The '3 way handshake' involves the middle two messages being combined into one message.
The 'Close channel' routine will send anything left in its buffer, then call the 'TCP_CLOSE' routine.

The 'TCP_CLOSE' routine co-operates with the 'IS_TCP_DECODE' routine, as in making a connection. 
To move the channels socket status through the various stages, depending on which side initiates the 
close.

Note that in real packet transfers, extra flags may be set in the messages that are sent. For example, 
the first message sent may be, FIN, or FIN,ACK, or PSH,FIN,ACK.

The 'IS_TCP_DECODE' routine tries to account for all these combinations, and also the state that the 
socket is currently in.

There is also the possibility that both ends of the TCP connection will try to initiate the close at the 
same time. In this situation, the process is slightly different

status status
     ESTABLISHED ESTABLISHED

      FIN_WAIT_1  FIN_WAIT_1

           CLOSING CLOSING

     TIME_WAIT TIME_WAIT

23

FIN FIN

ACK ACK



Ethernet Header Formats
----------------------------------

Physical (Ethernet) layer header format 14 bytes
$00 6 bytes destination MAC address
$06 6 bytes source MAC address
$0C word length/type

<$0800 Length of the packet
$0800 Ethernet IPV4 datagram
$0806 ARP Frame
$0835 RARP
$8100 IEEE802.1 Q tag 10/100 VLAN Frame
$86DD IPV6
$8808 10/100 Control Frame

------------------------------------------------------------------------------------------------------------------------------

Network (IPV4) layer header format 20 bytes Used by ICMP, IGMP, TCP, UDP, 
ENCAP, OSPF, SCTP
$00 byte Version/HL, Upper nibble=Version, Lower nibble=IHL
$01 byte Type of service, Bits 7-2=DSCP, Bits 1-0=ECN
$02 word Length
$04 word Identification
$06 word Flags and offset, Bits 15-13=Flags, Bits 12-0=Fragment offset
$08 byte TTL Time to live
$09 byte Protocol
$0A word Checksum
$0C long Source IP address
$10 long Destination IP address

Description of header format

Version
 The first header field in an IP packet is the four-bit version field. For IPv4, this is always equal 
to 4.

Internet Header Length (IHL)
The IPv4 header is variable in size due to the optional 14th field (options). The IHL field 

contains the size of the IPv4 header, it has 4 bits that specify the number of 32-bit words in the 
header. The minimum value for this field is 5,[26] which indicates a length of 5 × 32 bits = 160 bits = 
20 bytes. As a 4-bit field, the maximum value is 15, this means that the maximum size of the IPv4 
header is 15 × 32 bits, or 480 bits = 60 bytes.

Differentiated Services Code Point (DSCP)
Originally defined as the type of service (ToS), this field specifies differentiated services 

(DiffServ) per RFC 2474 (updated by RFC 3168 and RFC 3260). New technologies are emerging that 
require real-time data streaming and therefore make use of the DSCP field. An example is Voice over 
IP (VoIP), which is used for interactive voice services.

Explicit Congestion Notification (ECN)
This field is defined in RFC 3168 and allows end-to-end notification of network congestion 

without dropping packets. ECN is an optional feature that is only used when both endpoints support 
it and are willing to use it. It is effective only when supported by the underlying network.

24



Total Length
This 16-bit field defines the entire packet size in bytes, including header and data. The 

minimum size is 20 bytes (header without data) and the maximum is 65,535 bytes. All hosts are 
required to be able to reassemble datagrams of size up to 576 bytes, but most modern hosts handle 
much larger packets. Sometimes links impose further restrictions on the packet size, in which case 
datagrams must be fragmented. Fragmentation in IPv4 is handled in either the host or in routers.

Identification
This field is an identification field and is primarily used for uniquely identifying the group of 

fragments of a single IP datagram. Some experimental work has suggested using the ID field for other 
purposes, such as for adding packet-tracing information to help trace datagrams with spoofed source 
addresses,[27] but RFC 6864 now prohibits any such use.
If IP packet is fragmented during the transmission, all the fragments contain same identification 
number. to identify original IP packet they belong to.

Flags
A three-bit field follows and is used to control or identify fragments. They are (in order, from 

most significant to least significant):

        bit 0: Reserved; must be zero.[note 1]
        bit 1: Don't Fragment (DF)
        bit 2: More Fragments (MF)

If the DF flag is set, and fragmentation is required to route the packet, then the packet is dropped. 
This can be used when sending packets to a host that does not have resources to handle 
fragmentation. It can also be used for path MTU discovery, either automatically by the host IP 
software, or manually using diagnostic tools such as ping or traceroute. For unfragmented packets, 
the MF flag is cleared. For fragmented packets, all fragments except the last have the MF flag set. The
last fragment has a non-zero Fragment Offset field, differentiating it from an unfragmented packet.

Fragment Offset
The fragment offset field is measured in units of eight-byte blocks. It is 13 bits long and 

specifies the offset of a particular fragment relative to the beginning of the original unfragmented IP 
datagram. The first fragment has an offset of zero. This allows a maximum offset of (213 – 1) × 8 = 
65,528 bytes, which would exceed the maximum IP packet length of 65,535 bytes with the header 
length included (65,528 + 20 = 65,548 bytes).
The fragment offsets are calculated from the start of the transport layer

Time To Live (TTL)
An eight-bit time to live field helps prevent datagrams from persisting (e.g. going in circles) on

an internet. This field limits a datagram's lifetime. It is specified in seconds, but time intervals less 
than 1 second are rounded up to 1. In practice, the field has become a hop count—when the 
datagram arrives at a router, the router decrements the TTL field by one. When the TTL field hits zero,
the router discards the packet and typically sends an ICMP Time Exceeded message to the sender. 
The program traceroute uses these ICMP Time Exceeded messages to print the routers used by 
packets to go from the source to the destination.

Protocol
This field defines the protocol used in the data portion of the IP datagram. The Internet 

Assigned Numbers Authority maintains a list of IP protocol numbers as directed by RFC 790.
Tells the Network layer at the destination host, to which Protocol this packet belongs to, i.e. the next 
level Protocol. For example protocol number of ICMP is 1, TCP is 6 and UDP is 17.

25



Some of the common payload protocols are:

Protocol Number Protocol Name Abbreviation
1 Internet Control Message Protocol ICMP
2 Internet Group Management Protocol IGMP
6 Transmission Control Protocol TCP
17 User Datagram Protocol UDP
41 IPv6 encapsulation ENCAP
89 Open Shortest Path First OSPF
132 Stream Control Transmission Protocol SCTP 

Header Checksum
The 16-bit IPv4 header checksum field is used for error-checking of the header. When a 

packet arrives at a router, the router calculates the checksum of the header and compares it to the 
checksum field. If the values do not match, the router discards the packet. Errors in the data field 
must be handled by the encapsulated protocol. Both UDP and TCP have checksum fields.

When a packet arrives at a router, the router decreases the TTL field. Consequently, the router must 
calculate a new checksum.

Source address
This field is the IPv4 address of the sender of the packet. Note that this address may be 

changed in transit by a network address translation device.

Destination address
This field is the IPv4 address of the receiver of the packet. As with the source address, this 

may be changed in transit by a network address translation device.

Options
The options field is not often used. Note that the value in the IHL field must include enough 

extra 32-bit words to hold all the options (plus any padding needed to ensure that the header 
contains an integer number of 32-bit words). The list of options may be terminated with an EOL (End 
of Options List, 0x00) option; this is only necessary if the end of the options would not otherwise 
coincide with the end of the header. The possible options that can be put in the header are as 
follows:

Field Size (bits) Description
Copied 1 Set to 1 if the options need to be copied into all fragments of a

fragmented packet.
Option Class 2 A general options category. 0 is for "control" options, and 2 is for

"debugging and measurement". 1 and 3 are reserved.
Option Number 5 Specifies an option.
Option Length 8 Indicates the size of the entire option (including this field). This field

may not exist for simple options.
Option Data  Variable Option-specific data. This field may not exist for simple options.

    Note: If the header length is greater than 5 (i.e., it is from 6 to 15) it means that the options field is 
present and must be considered.
    Note: Copied, Option Class, and Option Number are sometimes referred to as a single eight-bit 
field, the Option Type.

Packets containing some options may be considered as dangerous by some routers and be blocked

26



Network (ARP) layer format 28 bytes
$00 word HDR Hardware type, $0001 ethernet
$02 word PRO Protocol, $0800=ethernet internet protocol
$04 byte HLN MAC address length, usually 6
$05 byte PLN IP address length, usually 4
$06 word OP Operation, 1=request, 2=reply
$08 6 bytes SHA Sender MAC address
$0E long SPA Sender IP address
$12 6 bytes THA Target MAC address
$18 long TPA Target IP address

Description of header format

HDR Hardware type
This field specifies the type of hardware used for the local network transmitting the ARP 

message; thus, it also identifies the type of addressing used. Some of the most common values for 
this field

1 Ethernet (10Mb)
6 IEEE 802 Networks
7 ARCNET
15 Frame Relay
16 Asynchronous Transfer Mode (ATM)
17 HDLC
18 Fibre Channel
19 Asynchronous Transfer Mode (ATM)
20 Serial Line

PRO Protocol Type
This field is the complement of the Hardware Type field, specifying the type of layer three 

addresses used in the message. For IPv4 addresses, this value is 2048 (0800 hex), which corresponds 
to the EtherType code for the Internet Protocol.

HLN Hardware Address Length
Specifies how long hardware addresses are in this message. For Ethernet or other networks 

using IEEE 802 MAC addresses, the value is 6.

PLN Protocol Address Length
Again, the complement of the preceding field; specifies how long protocol (layer three) 

addresses are in this message. For IP(v4) addresses this value is of course 4.

27



OP Opcode
This field specifies the nature of the ARP message being sent. The first two values (1 and 2) 

are used for regular ARP. Numerous other values are also defined to support other protocols that use 
the ARP frame format, such as RARP, some of which are more widely used than others

1 ARP Request
2 ARP Reply
3 RARP Request
4 RARP Reply
5 DRARP Request
6 DRARP Reply
7 DRARP Error
8 InARP Request
9 InARP Reply

SHA Sender Hardware Address
The hardware (layer two) address of the device sending this message (which is the IP 

datagram source device on a request, and the IP datagram destination on a reply, as discussed in the 
topic on ARP operation).
 

SPA Sender Protocol Address
The IP address of the device sending this message.

THA Target Hardware Address
The hardware (layer two) address of the device this message is being sent to. This is the IP 

datagram destination device on a request, and the IP datagram source on a reply)

TPA Target Protocol Address
The IP address of the device this message is being sent to.

------------------------------------------------------------------------------------------------------------------------------

28



Transport (UDP) layer format
Pseudo header for checksum calculation. Not to be included in actual header 12 bytes
$00 long Source IP address
$04 long Destination IP address
$08 byte zero
$09 byte $11 (17) UDP
$0A word UDP length from actual header

Actual header 8 bytes
$00 word Source port
$02 word Destination port
$04 word UDP length, payload length + 8 bytes of header
$06 word UDP checksum

----------------------------------------------------------------------------------------------------------------------------------
Transport (TCP) layer format
Pseudo header for checksum calculation. Not to be included in actual header 12 bytes
$00 long Source IP address
$04 long Destination IP address
$08 byte zero
$09 byte $06  TCP
$0A word TCP length, Actual header length + options + payload

Actual header 20 bytes
$00 word Source port
$02 word Destination port
$04 long Sequence number
$08 long ACK Sequence number
$0C word offset/res/flags
$0E word Window
$10 word Checksum
$12 word Urgent pointer
$14 Options bytes

Description of header format

Source Port
The source port number.

Destination Port
The destination port number.

Sequence Number
The sequence number of the first data octet in this segment (except when SYN is present).
If SYN is present the sequence number is the initial sequence number (ISN) and the first data
octet is ISN+1.

Acknowledgment Number
If the ACK control bit is set this field contains the value of the next sequence number the
sender of the segment is expecting to receive.  Once a connection is established this is always
sent.

29



Data Offset:  4 bits
The number of 32 bit words in the TCP Header.  This indicates where the data begins.  The
TCP header (even one including options) is an integral number of 32 bits long.

Reserved:  3 bits
Reserved for future use.  Must be zero.

Control Bits:  9 bits (from left to right):
NS: ECN - nonce - concealment protection
CWR: Congestion Window Reduced
ECE: ECN - Echo has a dual role
URG: Urgent Pointer field significant
ACK: Acknowledgment field significant
PSH: Push Function
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: No more data from sender

O O O O R R R C C C C C C C C C
|        |-------- FIN
|--------------- PSH

Window
The number of data octets beginning with the one indicated in the acknowledgment field
which the sender of this segment is willing to accept.

Checksum
The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit
words in the header and text.  If a segment contains an odd number of header and text octets
to be checksummed, the last octet is padded on the right with zeros to form a 16 bit word for
checksum purposes.  The pad is not transmitted as part of the segment.  While computing
the checksum, the checksum field itself is replaced with zeros.

The checksum also covers the 96 bit pseudo header conceptually

Urgent Pointer
This field communicates the current value of the urgent pointer as a positive offset from the
sequence number in this segment.  The urgent pointer points to the sequence number of the
octet following the urgent data.  This field is only be interpreted in segments with the URG
control bit set.

30



Options:  variable
Options may occupy space at the end of the TCP header and are a multiple of 8 bits in length.
All options are included in the checksum.  An option may begin on any octet boundary.  There
are two cases for the format of an option:

Case 1:  A single octet of option-kind.

Case 2:  An octet of option-kind, an octet of option-length, and the actual option-data octets.

The option-length counts the two octets of option-kind and option-length as well as the
option-data octets.

Note that the list of options may be shorter than the data offset field might imply.  The
content of the header beyond the End-of-Option option must be header padding (i.e., zero).

A TCP must implement all options.

Currently defined options include (kind indicated in octal):

Kind     Length    Meaning
----        ------        -------
0              -           End of option list.
1              -           No-Operation.
2              4          Maximum Segment Size.
3   3 Window scale.
4   2 TCPSACK permitted.

     
Specific Option Definitions

End of Option List
Kind=0

This option code indicates the end of the option list.  This might not coincide with the end of
the TCP header according to the Data Offset field.  This is used at the end of all options,
not the end of each option, and need only be used if the end of the options would not
otherwise coincide with the end of the TCP header.

No-Operation
Kind=1

This option code may be used between options, for example, to align the beginning of a
subsequent option on a word boundary. There is no guarantee that senders will use this
option, so receivers must be prepared to process options even if they do not begin on a word
boundary.

31



Maximum Segment Size

+-------------+-------------+-------------+------------+
|00000010|00000100|       max seg size       |
 +------------+--------------+------------+------------+
Kind=2   Length=4

Maximum Segment Size Option Data:  16 bits
If this option is present, then it communicates the maximum receive segment size at the TCP
which sends this segment. This field must only be sent in the initial connection request 
(i.e., in segments with the SYN control bit set).  If this option is not used, any segment size is
allowed.

Window Scale

+-------------+-------------+--------------+-------------+
|00000001|00000011|00000011|     scale    |
 +------------+-------------+--------------+-------------+
Kind=3   Length=3

The scale factor is the number of bits to left shift the 16 bit window size (ignored in SYN 
message)

TCPASCK permitted

+-------------+-------------+--------------+-------------+
|00000001|00000001|00000100|00000010|
 +------------+-------------+--------------+-------------+
Kind=4   Length=2

Padding:  variable

The TCP header padding is used to ensure that the TCP header ends and data begins on a 32
bit boundary.  The padding is composed of zeros.

32



------------------------------------------------------------------------------------------------------------------------------------

Transport (Ping) layer format ICMP 8 bytes
$00 byte Type, 8=IPV4 request, 0=IPV4 reply  Type of ICMP message
$01 byte Code, 0
$02 word Header checksum - including payload
$04 word Identifier
$06 word Sequence number

32 byte payload

Transport  (IGMP) layer format 8 bytes
$00 byte Type, Membership Query, membership Report, Leave group
$01 byte Max response time, only in Membership Query messages
$02 word Checksum
$04 long Group address, Behaviour of this field varies by the type of message sent:

Membership Query: (set to)
    General Query:  All zeroes
    Group Specific Query:  multicast group address
Membership Report:  multicast group address
Leave Group:  multicast group address

33



Fragmented Packet layout
---------------------------------

First packet :-
Standard Physical layer.
Standard Network layer, other than Flags/offset = $2000 
Transport layer has a length (and checksum?) for the entire unfragmented payload.

Second packet:- 
Standard Physical layer.
Standard Network layer, other than Flags = %001 or %000 on the last fragment. 

Offset = offset from start of the payload, divided by 8. 
There is no transport layer

ARP Handling
------------------

The handling of acquiring and supplying MAC addresses works as follows.

When the background packet receiving routine receives an ARP packet. If the packet is a Gratuitous 
request, or a reply to a request we made. Then the details are entered into the ARP table.
If it is a request for our MAC address, then a reply is sent to the sender.

When the systems IP address is set, or changed. Then a Gratuitous packet is broadcast over the 
network.

When the required MAC address, for an IP address, is not availablefrom the ARP table. The method 
for obtaining it goes along these lines.

When a channel is opened with OPEN_IN, If there is not a MAC address entry in the ARP table, then a
ARP request is sent. A 40 second timer, and a flag, are initialized in the channel definition block to 
indicate that the MAC address is invalid. The channel open, then finishes normally.

What happens next depends on how quickly the ARP request is replied to, and how much time passes
between opening the channel, and trying to do any I/O.

Assuming a worst case scenario, where there is never an ARP reply received, and channel I/O starts 
straight after opening the channel. The process will be as follows.

When any I/O is done to the channel, there will be a wait for 20 seconds, followed by another ARP 
request, In case the first one way lost. Then a further wait of 20 seconds, followed by a final ARP 
request. The timer will be reset to another 40 seconds, ETH_ERRNO will be set to error 34, and finally 
a system 'transmission error' will be returned.

If an ARP reply is received within the 40 seconds, then the above procedure will terminate, and I/O 
will continue normally.

34



IP Error messages
-----------------------

Receive errors
iperr.rxomem 1 Insufficient memory to read packet into
iperr.rxcsum 2 Read packet validation failed, checksum mismatch
iperr.badmac 3 Received packet from unexpected MAC address
iperr.ctrl  4 Unable to process TCP control bits
iperr.segerr 5 Unexpected TCP segment numbers
iperr.seqerr 6 Unexpected TCP sequence number

iperr.txerr 8 Last packet was not transmitted successfully

Send errors
iperr.txnogo 10 Timeout waiting for transmit buffer to empty
iperr.txprot 11 Protocol not found when creating a packet

iperr.txarpf 12 Failure sending ARP request
iperr.txpingf 13 Failure sending Ping reply
iperr.txnoak 14 Attempt to send too many packets with received ACK's (TCP)
iperr.txSYAC 15 Failure sending a SYN,ACK

Open errors
iperr.inparm 20 Invalid parameters for requested OPEN type
iperr.noport 21 No managed ports available
iperr.nomac 22 Unable to squire MAC address for specified IP address
iperr.portna 23 Requested port already in use
iperr.noserv 24 No response from requested TCP server for a SYN request

I/O errors
iperr.txcsum 30 Error creating checksum for transmission
iperr.toobig 31 Attempt to send more than 64K bytes
iperr.scklen 32 Bad sockaddr length
iperr.fragto 33 Fragmented packet incomplete before life ran out 
iperr.macto 34 I/O timeout while waiting for a MAC address 
iperr.outrng 35 IP_LISTEN queue out of range
iperr.nottcp 36 Not a TCP channel
iperr.lsomem 37 Out of memory creating a dummy channel definition block
iperr.lqfull  38 The queue for a listening channel is full

Close errors
iperr.closto 40 Timed out waiting for a TCP close acknowledgement
iperr.wait1  41 While in FIN-WAIT-1, Timed out waiting for an ACK
iperr.wait2  42 While in FIN-WAIT-2, Timed out waiting for a FIN (last ACK)
iperr.wait3  43 While in LAST-ACK, Timed out waiting for final ACK
iperr.uxfin   44 Unexpected FIN received

IP Trap errors
iperr.dbrec 50 Error reading a database entry

CP2200 Initialization errors
iperr.inito 100 Timed out while waiting for controller to reset
iperr.aufail 110 Timed out while waiting for auto-neg in Physical layer

35


