
QL Assembly Language Mailing List

Issue 3

Norman Dunbar

Copyright c©2015 Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_003/Assembly_

Language_003.pdf

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

This pdf document was created on D:20160209102847Z.

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_003/Assembly_Language_003.pdf
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_003/Assembly_Language_003.pdf
http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 11

1.1 Feedback 11

1.2 Subscribing to The Mailing List 11

1.3 Contacting The Mailing List 12

2 Bubble Sorts . 13

2.0.1 Useful Improvements . 16

3 Printing Multiple Strings at Once . 21

3.0.2 Stacking D7 Twice? Why? . 23

3.0.3 Testing MultiPrint . 23

4 Hexdump Utility . 27

4.0.4 Hexdump Listing . 27

4.0.5 Hexdump Code Explained . 32

4.0.6 Hex Conversion . 33

5 Jump Tables . 35

5.0.7 What About Missing Options . 40

6 Using the MC68020 Instructions . 41

List of Tables

2.1 Working Registers for Bubblesort Compare and Swap Code 18

6.1 Emulators and the 68020 . 41

List of Figures

Listings

2.1 Bubblesort Algorithm . 13

2.2 Bubblesort Test Harness . 14

2.3 Bubblesort Test Harness . 14

2.4 Bubblesort . 15

2.5 Better Bubblesort . 17

2.6 Bubblesort - Compare and Swap - Bytes . 18

2.7 Bubblesort - Compare and Swap - Words . 19

2.8 Bubblesort - Compare and Swap - Long Words . 19

2.9 Bubblesort Test Harness Revisited . 19

3.1 Multiprint Utility . 21

3.2 Testing the Multiprint Utility . 23

3.3 The Multiprint Library File . 25

3.4 Executing the Multiprint Test Harness . 25

3.5 Results of the Multiprint Test Harness . 25

4.1 Executing the Hexdump Utility . 27

4.2 Hexdump Utility . 27

4.3 Example Hexdump Output . 34

5.1 Processing User Options - First Attempt . 35

5.2 Processing User Options - Improved First Attempt 36

5.3 Processing User Options - Another Improved First Attempt 37

5.4 Processing User Options - Jump Tables . 38

5.5 Processing User Options - Jump Tables . 40

1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

12 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I’ve set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best format,
because I can simply include those directly, but I doubt I’ll be getting many of those! But not to
worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2. Bubble Sorts

Part of a little program that I’m working on requires the characters of a word to be sorted into order,
ascending in this case, and as there’s no trap or vector in QDOSMSQ to allow this to be easily done,
I’ve had to work out my own. The bubble sort is one of the simplest sorting algorithms that there is,
however, it is pretty inefficient as much of the work it does is checking over data that it has already
sorted in any previous pass. Also, the more data there are to sort, the longer it takes to sort. Much
longer in fact.

Looking on Wikipedia for some slightly improved versions, I found the one below. It doesn’t
reduce the number of swaps that take place, but it does ‘know’ that when it has made a pass through
the array of bytes, in this case, the last item that it swapped is the lowest possible value for this
pass, and anything from that point on in the array is already sorted. By ‘knowing’ it does at least
reduce the number of comparisons that have to be made on each pass, which reduces the run time
of the sort.

The data is sorted by moving the higher values - in this version - down the array, one place at a
time, until the array’s bottom end contains all the sorted data, while the top end contains the data
that are yet to be sorted. Hopefully, the following will make things a bit clearer, the pseudo code
was obtained from Wikipedia.

;−−
B l a t a n t l y s t o l e n from Wik iped i a !
Very s l i g h t l y m o d i f i e d by Norman Dunbar .

An improved B u b b l e S o r t which ‘ knows ’ t h a t a f t e r each pass , t h e l o w e s t
i t em (s) must be a l r e a d y s o r t e d .

For example :

9 1 5 3 4 , a f t e r p a s s 0 , becomes :
1 5 3 4 9 so we s t o p a t ‘4 ’ n e x t t ime , n o t a t ‘ 9 ’ .

;−−

14 Chapter 2. Bubble Sorts

b u b b l e S o r t (A : l i s t o f s o r t a b l e i t e m s)
n = l e n g t h (A)
r e p e a t

newn = 0
f o r i = 1 t o n−1

Temp = A[i −1]
i f Temp > A[i] t h e n

A[i −1] = A[i]
A[i] = Temp
newn = i

end i f
end f o r
n = newn

u n t i l n = 0
end p r o c e d u r e
;−−

Listing 2.1: Bubblesort Algorithm

From the above algorithm, we can see that a byte of data will be looked at and using comparisons
and swaps, will ‘bubble’ its way to the lower end of the array - that’s the bit furthest from the word
count in a QDOSMSQ string, for example.

An example is called for, we start with the test harness which sets up a tiny array of 4 upper case
letters, with a leading word count, and sorts it.

1 s t a r t
2 l e a s t u f f , a1 ; Where t h e d a t a a r e
3 b s r . s p r i n t _ i t ; P r i n t d a t a t o #1 u n s o r t e d
4 b s r . s b u b b l e s o r t ; D0 . L w i l l be z e r o
5 b s r . s p r i n t _ i t ; P r i n t s o r t e d d a t a t o #1
6 r t s
7
8 s t u f f dc .w s t u f f _ e n d −s t u f f −2
9 dc . b ’C’ , ’A’ , ’D’ , ’B’

10 s t u f f _ e n d equ ∗
Listing 2.2: Bubblesort Test Harness

The code above needs to call a helper routine to print the before and after data, that code follows
and is a slightly modified version of the code to find channel #1 and print a string, from the last
issue where we were printing the name list.

11 ;−−
12 ; Some h o p e f u l l y f a m i l i a r code from l a s t i s s u e , t o p r i n t some d a t a
13 ; t o c h a n n e l #1 which MUST BE OPEN .
14 ;−−
15 bv_chbas equ $30 ; O f f s e t t o c h a n n e l t a b l e .
16
17 ;−−
18 ; F ind #1 i n t h e c h a n n e l t a b l e . We shouldn ’ t be o f f t h e end of t h e
19 ; t a b l e , so NOT CHECKED.
20 ; We assume #1 i s open too , so t h a t ’ s NOT CHECKED f o r e i t h e r .
21 ;−−
22 p r i n t _ i t
23 move . l a1 ,−(a7) ; A1 i s i n use , p r e s e r v e i t
24

15

25 f indChan
26 moveq #40 , d1 ; O f f s e t t o e n t r y #1
27 move . l bv_chbas (a6) , a0 ; Channel t a b l e base o f f s e t
28 adda . l d1 , a0 ; R e q u i r e d e n t r y f o r #1
29 move . l 0 (a6 , a0 . l) , a0 ; A0 i s ID of c h a n n e l #1
30
31 ;−−
32 ; P r i n t t h e t e x t we r e a d from t h e name l i s t t o c h a n n e l # 1 .
33 ; C o r r u p t s D1−D3 / A1 . P r e s e r v e s A0 / A2−A3 . D0 = e r r o r code .
34 ;−−
35 p r i n t T e x t
36 move .w u t_mtex t , a2 ; Ve c to r t o p r i n t a s t r i n g
37 j s r (a2) ; P r i n t i t
38
39 ;−−
40 ; P r i n t a l i n e f e e d t o c h a n n e l # 1 .
41 ; C o r r u p t s D1 / A1 . P r e s e r v e s D2−D3 / A0 / A2−A3 . D0 = e r r o r code .
42 ;−−
43 l i n e f e e d
44 moveq # i o _ s b y t e , d0 ; P r i n t a b y t e t r a p
45 moveq #10 , d1 ; L i n e f e e d c h a r a c t e r
46 moveq #−1,d3 ; Timeout
47 t r a p #3 ; Do i t
48
49 move . l (a7) + , a1 ; R e t r i e v e A1
50 r t s

Listing 2.3: Bubblesort Test Harness

So far so simple, the following is my version of the pseudo code from Wikipedia, converted into
assembly language. The labels are named in such a way as, hopefully, to give you an idea of where
we are in the pseudo code as converted. Some bits don’t convert exactly, the FOR loop, for example,
starts with D2=0 and gets incremented by 1 before the loop, not at the end as per a normal FOR
loop. But you get the idea, I hope!

The working registers are listed in the comments so that you can, if you wish, follow what’s going
on.

51 ;−−
52 ; ENTRY:
53 ;
54 ; A1 . L = S t a r t a d d r e s s o f b y t e s t o be s o r t e d . Word c o u n t f i r s t .
55 ;
56 ;−−
57 ; WORKING:
58 ;
59 ; A1 . L = S t a r t Address o f b y t e s t o be s o r t e d , word c o u n t f i r s t .
60 ; A2 . L = Bytes b e i n g compared r i g h t now . (−1(a2) and (a2)) .
61 ; D0 .W = ‘n ’ = end of u n s o r t e d d a t a .
62 ; D1 . B = Temp f o r swapping .
63 ; D2 .W = ‘ i ’ = loop c o u n t e r .
64 ; D3 .W = ‘ newn ’ = l a s t i t em s o r t e d .
65 ;−−
66 ; EXIT :
67 ;
68 ; D0 . L = 0 .
69 ; A1 . L = P r e s e r v e d − S t a r t a d d r e s s o f s o r t e d b y t e s ’ word c o u n t .

16 Chapter 2. Bubble Sorts

70 ; A l l o t h e r r e g i s t e r s p r e s e r v e d .
71 ;−−
72 b u b b l e s o r t
73 movem . l d1−d3 / a1−a2 ,−(a7)
74 move .w (a1) + , d0 ; N = l e n g t h (a)
75 beq . s bs_done
76 subq .w #1 , d0 ; We need n−1 when t e s t i n g
77
78 b s _ r e p e a t equ ∗ ; Repea t
79 movea . l a1 , a2 ; A2 = F i r s t u n s o r t e d b y t e
80 moveq #0 , d3 ; Newn = 0
81
82 b s _ f o r _ l o o p
83 moveq #0 , d2 ; For i = 1 t o n−1
84
85 b s _ n e x t
86 addq . b #1 , d2
87 move . b (a2) + , d1 ; Temp = A[i −1]
88 cmp . b (a2) , d1 ; I f Temp > A[i] t h e n
89 b l s . s b s _ e n d _ i f ; Sk ip swap i f A[i −1] <= A[i]
90
91 bs_swap
92 move . b (a2) , −1(a2) ; A[i −1] = A[i]
93 move . b d1 , (a2) ; A[i] = Temp
94 move .w d2 , d3 ; Newn = i
95
96 b s _ e n d _ i f equ ∗ ; end i f
97 cmp .w d2 , d0 ; I = n−1 y e t ?
98 bne . s b s _ n e x t ; End f o r
99 move .w d3 , d0 ; N = newn

100 t s t .w d0 ; N = 0 y e t ?
101
102 b s _ u n t i l
103 bne . s b s _ r e p e a t ; U n t i l n = 0
104
105 bs_done
106 movem . l (a7) + , d1−d3 / a1−a2
107 c l r . l d0
108 r t s

Listing 2.4: Bubblesort

So, type the above into a file, save it, assemble it in the usual manner with Gwasl and then load it
into a reserved area of memory (mine is 98 bytes long) and simply CALL it. You should see two
lines of text on channel #1. The second line being the sorted version of the first.

2.0.1 Useful Improvements

The above is fine for sorting the characters in a QDOSMSQ string, and that’s the only sorting I
actually need for my current little project, however, with a couple of minor changes, we can make it
even more useful and allow us to sort words, longs and even arrays of strings, if we wish. One way
to do this would be to duplicate the code above as many times as we need and edit it accordingly,
but that is wasteful even in these days of QPC and other emulators allowing multi-megabytes of
RAM. We need a little redesign.

17

If we extract the compare and swap code to a separate subroutine, we can call it from the main loop,
but rather than using a BSR instruction, we can use an address register to hold the compare and swap
code’s address, and use JSR (An) instead. That way, we only need to set up the address register
once, with the desired compare and swap code’s address, and we can reuse most of the above code.

Here’s the slightly more useful version of the above code - which can replace the above, from line
51 onwards.

51 ;−−
52 ; ENTRY:
53 ; For e n t r y a t l a b e l b u b b l e s o r t :
54 ;
55 ; A1 . L = S t a r t a d d r e s s o f d a t a t o be s o r t e d . Word c o u n t f i r s t .
56 ;
57 ;−−
58 ; WORKING:
59 ;
60 ; A1 . L = S t a r t Address o f d a t a t o be s o r t e d , word c o u n t f i r s t .
61 ; A2 . L = Data b e i n g compared r i g h t now . (−1(a2) and (a2)) .
62 ; A3 . L = Address o f t h e Compare and swap r o u t i n e .
63 ; D0 .W = ‘n ’ = end of u n s o r t e d d a t a .
64 ; D1 . B = Temp f o r swapping .
65 ; D2 .W = ‘ i ’ = loop c o u n t e r .
66 ; D3 .W = ‘ newn ’ = l a s t i t em s o r t e d .
67 ;−−
68 ; EXIT :
69 ;
70 ; D0 . L = 0 .
71 ; A1 . L = P r e s e r v e d − S t a r t a d d r e s s o f s o r t e d b y t e s ’ word c o u n t .
72 ; A l l o t h e r r e g i s t e r s p r e s e r v e d .
73 ;−−
74 b u b b l e s o r t
75 movem . l d1−d3 / a1−a2 ,−(a7)
76 move .w (a1) + , d0 ; N = l e n g t h (a)
77 beq . s bs_done
78 subq .w #1 , d0 ; We need n−1 when t e s t i n g
79
80 b s _ r e p e a t equ ∗ ; Repea t
81 movea . l a1 , a2 ; A2 = F i r s t u n s o r t e d b y t e
82 moveq #0 , d3 ; Newn = 0
83
84 b s _ f o r _ l o o p
85 moveq #0 , d2 ; For i = 1 t o n−1
86
87 b s _ n e x t
88 addq . b #1 , d2
89 j s r (a3) ; Compare and swap i f n e c e s s a r y
90
91 b s _ e n d _ i f equ ∗ ; end i f
92 cmp .w d2 , d0 ; I = n−1 y e t ?
93 bne . s b s _ n e x t ; End f o r
94 move .w d3 , d0 ; N = newn
95 t s t .w d0 ; N = 0 y e t ?
96
97 b s _ u n t i l
98 bne . s b s _ r e p e a t ; U n t i l n = 0

18 Chapter 2. Bubble Sorts

99
100 bs_done
101 movem . l (a7) + , d1−d3 / a1−a2
102 c l r . l d0
103 r t s

Listing 2.5: Better Bubblesort

In the three example compare and swap routines, see Listing 2.6, 2.7 and 2.8, the usage of the
working registers is described in Table 2.1.

Register Description

A1.L Start Address of data to be sorted.
A2.L Data being compared right now.
A3.L Address of the Compare and swap routine.
D0.W ‘n’ = end of unsorted data.
D1.B Temp for swapping
D2.W ‘i’ = loop counter
D3.W ‘newn’ = last item sorted

Table 2.1: Working Registers for Bubblesort Compare and Swap Code

104 cas_b
105 move . b (a2) + , d1 ; Temp = A[i −1]
106 cmp . b (a2) , d1 ; I f Temp > A[i] t h e n
107 b l s . s c a s b _ e x i t ; Sk ip swap i f A[i −1] <= A[i]
108
109 casb_swap
110 move . b (a2) , −1(a2) ; A[i −1] = A[i]
111 move . b d1 , (a2) ; A[i] = Temp
112 move .w d2 , d3 ; Newn = i
113
114 c a s b _ e x i t r t s

Listing 2.6: Bubblesort - Compare and Swap - Bytes

The first action required by the code is to grab the current value to be compared. This is pointed to
by A2 on entry and is incremented to point at the next entry. In the above, this is byte sized, but see
Listing 2.6, 2.7 and 2.8 for subroutines that compare and swap word and long word sized data. The
data from the table is loaded into the ‘temp’ variable, also known as D1.size, where size is .B, .W
or .L appropriately depending on which compare and swap code we are running.

The comparison between table entries A[i-1] and A[i], from the pseudo code description, actually
compares ‘temp’ with ‘A[i]’, or D1.size with (A2), but it’s the same comparison.

In the event that the data in D1 is larger (in this case) than the data in the table pointed to by A2, a
swap is made and we set ‘newn’ to the index of the last swap made. We only swap when D1 is
larger, that way we don’t end up swapping data that are the same. We are running an inefficient
algorithm after all, there’s no need to make it any more inefficient than we have to.

The ‘newn’ variable tells the main loop of the code to stop comparing because whatever index into
the table was last swapped, is where the sorted part of the table begins. We don’t need to compare
our current value (in D1) with any entries in the table from ‘newn’ onwards.

The following two subroutines can be used to sort arrays of word and/or long words. All that was

19

changed was the size of the data loaded into D1, the CMP instruction and the data that are swapped
around.

115 cas_w
116 move .w (a2) + , d1 ; Temp = A[i −1]
117 cmp .w (a2) , d1 ; I f Temp > A[i] t h e n
118 b l s . s c a s w _ e x i t ; Sk ip swap i f A[i −1] <= A[i]
119
120 casw_swap
121 move .w (a2) , −2(a2) ; A[i −1] = A[i]
122 move .w d1 , (a2) ; A[i] = Temp
123 move .w d2 , d3 ; Newn = i
124
125 c a s w _ e x i t r t s

Listing 2.7: Bubblesort - Compare and Swap - Words

126 c a s _ l
127 move . l (a2) + , d1 ; Temp = A[i −1]
128 cmp . l (a2) , d1 ; I f Temp > A[i] t h e n
129 b l s . s c a s l _ e x i t ; Sk ip swap i f A[i −1] <= A[i]
130
131 c a s l _ s w a p
132 move . l (a2) , −4(a2) ; A[i −1] = A[i]
133 move . l d1 , (a2) ; A[i] = Temp
134 move .w d2 , d3 ; Newn = i
135
136 c a s l _ e x i t r t s

Listing 2.8: Bubblesort - Compare and Swap - Long Words

In our test harness, the code requires to be modified to add a pointer to the desired compare and
swap routine in register A3, as follows:

1 s t a r t
2 l e a s t u f f , a1 ; Where t h e d a t a a r e
3 l e a cas_b , a3 ; Compare and swap b y t e s
4 b s r . s p r i n t _ i t ; P r i n t d a t a t o #1 u n s o r t e d
5 b s r . s b u b b l e s o r t ; D0 . L w i l l be z e r o
6 b s r . s p r i n t _ i t ; P r i n t s o r t e d d a t a t o #1
7 r t s
8
9 s t u f f

10 dc .w s t u f f _ e n d −s t u f f −2
11 dc . b ’C’ , ’A’ , ’D’ , ’B’
12
13 s t u f f _ e n d equ ∗

Listing 2.9: Bubblesort Test Harness Revisited

If we were sorting an array of word or long word data, we would simply point A3 at the appropriate
subroutine, and that’s the only difference.

So far, so good, we have the ability to sort bytes, word and long word based data. What about
strings? Well, they are a little different and comparing strings is slightly more complicated than a
simple cmp.l (a2),d1 instruction, for example. I’ll continue with string sorting in the next issue,
for now, we can be satisfied with bytes, words and long words.

There, I think that’s all sorted now!

3. Printing Multiple Strings at Once

Have you ever needed to print multiple strings, one after the other, perhaps with a linefeed between
each one? Neither have I until recently. So if you ever find yourself needing to do exactly that, then
the following short utility might be of some help.

1 ;−−
2 ; MULTIPRINT : P r i n t s numerous s t r i n g s t o t h e c h a n n e l i n A0 . L from a
3 ; t a b l e o f s t r i n g s a t A1 . L . The t a b l e f o r m a t i s a s f o l l o w s :
4 ;
5 ; s t r i n g s dc .w n ; How many s t r i n g s ?
6 ; s1 dc .w s1e−s1−2 ; S i z e o f s t r i n g 1
7 ; dc . b ’ . . . ’ ; By tes o f s t r i n g 1
8 ; s1e ds .w 0 ; Padd ing b y t e i f r e q u i r e d
9 ; s2 dc .w s2e−s2−2 ; S i z e o f s t r i n g 2

10 ; dc . b ’ . . . ’ ; By tes o f s t r i n g 2
11 ; s2e ds .w 0 ; Padd ing b y t e i f r e q u i r e d
12 ; ; And so on .
13 ;−−
14 ; REGISTER USAGE:
15 ;
16 ; ENTRY:
17 ;
18 ; A0 . L = Channel ID t o be used f o r o u t p u t .
19 ; A1 . L = S t a r t o f s t r i n g s t a b l e .
20 ;
21 ; EXIT :
22 ;
23 ; D0 . L = E r r o r code or z e r o . Z f l a g s e t a c c o r d i n g l y .
24 ; A1 . L = C o r r u p t e d .
25 ; A l l o t h e r r e g i s t e r s p r e s e r v e d .
26 ;−−
27 ; ENTRY POINTS :
28 ;

22 Chapter 3. Printing Multiple Strings at Once

29 ; MULTIPRINT − E n t e r h e r e t o p r i n t t h e t a b l e o f s t r i n g s e x a c t l y as i s
30 ; w i th no a d d i t i o n a l l i n e f e e d s e t c be tween s t r i n g s . I f you want any
31 ; l i n e f e e d s , you need t o d e f i n e them i n t h e s t r i n g s .
32 ;
33 ; MULTIPRINT_LF − E n t e r h e r e t o p r i n t t h e s t r i n g s wi th a l i n e f e e d
34 ; p r i n t e d a f t e r each one . There w i l l be a l i n e f e e d a t t h e end , a f t e r
35 ; t h e f i n a l s t r i n g t o o .
36 ;−−
37 ; WORKING REGISTERS :
38 ;
39 ; D7 . L = $0A i f l i n e f e e d s a r e r e q u e s t e d , z e r o o t h e r w i s e .
40 ; D6 .W = S t r i n g s s t i l l t o p r i n t c o u n t e r .
41 ; A0 . L = Channel ID b e i n g p r i n t e d t o .
42 ; A1 . L = Running p o i n t e r t o n e x t s t r i n g t o p r i n t .
43 ; A2 . L = Used t o c a l l QDOSMSQ v e c t o r t o p r i n t a s t r i n g .
44 ; O t h e r s − As r e q u i r e d by QDOSMSQ v e c t o r s and t r a p c a l l s .
45 ;−−
46
47 t i m e o u t equ −1 ; Timeout f o r TRAP #3 c a l l s
48 l i n e f e e d equ $0A ; L i n e f e e d c h a r a c t e r
49
50 ;−−
51 ; MULTIPRINT_LF .
52 ;−−
53 M u l t i p r i n t _ l f
54 move . l d7 ,−(a7) ; Save L i n e f e e d i n d i c a t o r
55 moveq # l i n e f e e d , d7 ; We want l i n e f e e d s
56 b r a . s mp_saveregs ; And drop i n below
57
58 ;−−
59 ; MULTIPRINT .
60 ;−−
61 M u l t i p r i n t
62 move . l d7 ,−(a7) ; See main t e x t
63 c l r . l d7 ; No l i n e f e e d s r e q u i r e d
64
65 mp_saveregs
66 movem . l d1−d3 / d6−d7 / a2 ,−(a7) ; Save working r e g i s t e r s + D7 a g a i n !
67 move .w (a1) + , d6 ; F e t c h c o u n t e r v a l u e
68 b r a . s mp_next ; Sk ip loop f i r s t t ime
69
70 mp_loop
71 move . l a1 ,−(a7) ; Save c u r r e n t s t r i n g
72 move .w u t_mtex t , a2 ; Get t h e v e c t o r
73 j s r (a2) ; P r i n t c u r r e n t s t r i n g
74 bne . s mp_oops ; Something bad happened
75 move . l (a7) + , a1 ; S t a r t o f c u r r e n t s t r i n g
76 adda .w (a1) , a1 ; Add s i z e word
77 addq . l #3 , a1 ; P r e p a r e t o make even
78 move . l a1 , d5
79 b c l r #0 , d5 ; D5 now p o i n t s a t n e x t s t r i n g
80 move . l d5 , a1 ; Back i n t o A1
81
82 mp_lf
83 move . b d7 , d1 ; L i n e f e e d or z e r o
84 beq . s mp_next ; Not p r i n t i n g l i n e f e e d s

23

85 moveq # i o _ s b y t e , d0 ; P r i n t a b y t e
86 moveq # t i m e o u t , d3
87 t r a p #3 ; P r i n t l i n e f e e d
88 t s t . l d0
89 bne . s mp_done ; Something bad happened
90
91 mp_next
92 dbf d6 , mp_loop ; Go around a g a i n
93 c l r . l d0 ; No e r r o r s d e t e c t e d
94 b r a . s mp_done ; Clean up on t h e way o u t
95
96 mp_oops
97 adda . l #4 , a7 ; Remove saved A1 . L
98
99 mp_done

100 movem . l (a7) + , d1−d3 / d6−d7 / a2 ; R e s t o r e working r e g i s t e r s
101 move . l (a7) + , d7 ; R e s t o r e o r i g i n a l D7 a g a i n
102
103 mp_ex i t
104 t s t . l d0 ; S e t t h e Z f l a g as n e c e s s a r y
105 r t s
106 ;−−

Listing 3.1: Multiprint Utility

3.0.2 Stacking D7 Twice? Why?

When I originally wrote this code, I explicitly saved the entry value of register D7, by itself, in
multiprint_lf but not in multiprint where it was the linefeed indicator value that was stacked
along with the other working registers. When the code was almost done, it popped the working
registers off the stack and checked D7 for zero at mp_done. If it was not zero, I popped D7 off the
stack again - assuming that we had entered at multiprint_lf. Can you see the ever so slightly
insidious bug there?

What happens if I enter the code at multiprint with D7 already set to zero, when the utility was
done, it would pop D7 off the stack, and check it and on finding it to be zero, would attempt to pop
another D7 off the stack, assuming that we had entered at multiprint_lf. D7 would be loaded
with the calling code’s return address from the stack as opposed to its original value, and so the
final RTS would cause a crash.

The solution is as per the code above, D7 gets stacked by both utility routines and will always be
popped off at the end, twice. That helps keep the stack neat and tidy and avoids this particular
intermittent bug/crash.

3.0.3 Testing MultiPrint

To test the utility code, all you need is something line the following which I’ve saved typing time
and effort by setting up as yet another filter program which allows me to pass a channel number on
the command line, and the output will go to that channel. Lazy? me? ;-)

1 me equ −1 ; Th i s j o b
2 c h a n n e l _ i d equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
3
4 s t a r t

24 Chapter 3. Printing Multiple Strings at Once

5 b r a s t a r t _ 2
6 dc . l $00
7 dc .w $4afb
8
9 name

10 dc .w name_end−name−2
11 dc . b ’ M u l t i P r i n t Tes t ’
12
13 name_end equ ∗
14
15 v e r s i o n
16 dc .w vers_end−v e r s i o n −2
17 dc . b ’ V e r s i o n 1 . 0 0 ’
18
19 v e r s _ e n d equ ∗
20
21 s t r _ t a b l e
22 dc .w 4
23
24 s1 dc .w s1e−s1−2
25 dc . b ’ Th i s i s a demo of M u l t i P r i n t ’
26 s1e equ ∗
27 ds .w 0
28
29 s2 dc .w s2e−s2−2
30 dc . b ’ which shows how easy i t i s t o ’
31 s2e equ ∗
32 ds .w 0
33
34 s3 dc .w s3e−s3−2
35 dc . b ’ p r i n t m u l t i p l e s t r i n g s i n one easy manner . ’
36 s3e equ ∗
37 ds .w 0
38
39 s4 dc .w s4e−s4−2
40 dc . b ’ W r i t t e n by Norman Dunbar ’ , $0a
41 s4e equ ∗
42 ds .w 0
43
44
45 s t a r t _ 2
46 move . l c h a n n e l _ i d (a7) , a0 ; c h a n n e l i d
47 l e a s t r _ t a b l e , a1 ; Tab le o f s t r i n g s
48 b s r M u l t i P r i n t ; P r i n t w i th no l i n e f e e d s
49
50 l e a s t r _ t a b l e , a1 ; Tab le o f s t r i n g s a g a i n
51 b s r M u l t i P r i n t _ l f ; P r i n t w i th l i n e f e e d s between
52
53 moveq #0 , d3 ; No e r r o r code
54 moveq # m t _ f r j o b , d0
55 moveq #me , d1 ; Th i s j o b i s a b o u t t o d i e
56 t r a p #1
57
58 i n " r a m 1 _ M u l t i P r i n t _ l i b "

Listing 3.2: Testing the Multiprint Utility

25

And finally, the ram1_MultiPrint_lib file will look like this. However, if you have changed the code
layout above (for MultiPrint_asm) then you may have to regenerate the lib file using the SYM_bin
utility.

1 MULTIPRINT_LF EQU ∗+$00000000
2 MULTIPRINT EQU ∗+$00000006
3
4 l i b " r a m 1 _ m u l t i p r i n t _ b i n "

Listing 3.3: The Multiprint Library File

You should execute the test harness as follows:

ex r a m 1 _ M u l t i P r i n t _ t e s t _ b i n , #1

Listing 3.4: Executing the Multiprint Test Harness

And the output will be something like the following:

Thi s i s a demo of M u l t i P r i n t which shows how easy i t i s t o p r i n t
m u l t i p l e s t r i n g s i n one easy manner . W r i t t e n by Norman Dunbar
Th i s i s a demo of M u l t i P r i n t
which shows how easy i t i s t o
p r i n t m u l t i p l e s t r i n g s i n one easy manner .
W r i t t e n by Norman Dunbar

Listing 3.5: Results of the Multiprint Test Harness

The first couple of lines shows the data printed “as is” without linefeeds. The remainder of the
output shows each string printed with a separating linefeed.

Because I had my channel #1 defined as a quite narrow window, the first line of output wrapped
around onto the next line, in the normal manner of printing long strings.

Because there are now two linefeeds after the final string, we get a blank line after the final one. Or,
we will when the next print to that channel takes place, it’s possible that QDOSMSQ has the final
linefeed as pending. I noticed that in testing occasionally.

4. Hexdump Utility

I’m a frequent user of the Linux/Unix hexdump utility in my real life, and I miss it on QDOSMSQ.
I decided to put that right and as a continuation of the use of filter utilities in a previous issue, I
decided to make this utility a filter too.

To execute the utility, you simply:

ex win1_hexdump_bin , s o u r c e _ f i l e , d e s t _ l o c a t i o n

Listing 4.1: Executing the Hexdump Utility

The source file should be obvious, it’s the one you want to examine, and the dest_location can be
either a filename or a channel number.

So, without any further ado, here’s the code. I’ll explain it at the end, but it’s fairly simple.

4.0.4 Hexdump Listing

1 ;−−
2 ; HEXDUMP:
3 ;
4 ; A f i l t e r program u s i n g an i n p u t and o u t p u t channe l , p a s s e d on
5 ; t h e s t a c k f o r i t ’ s f i l e s .
6 ;
7 ; EX hexdump_bin , b i n a r y _ f i l e , o u t p u t _ f i l e
8 ;
9 ;−−

10 ; 2 1 / 0 9 / 2 0 1 5 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t
11 ;−−
12 ; (c) Norman Dunbar , 2015 . P e r m i s s i o n g r a n t e d f o r u n l i m i t e d use
13 ; o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d . J u s t e n j o y !
14 ;−−
15
16 me equ −1 ; Th i s j o b

28 Chapter 4. Hexdump Utility

17 i n f i n i t e equ −1 ; For t i m e o u t s
18 e r r _ b p equ −15 ; Bad p a r a m e t e r e r r o r
19 l i n e f e e d equ $0A ; L i n e f e e d c h a r a c t e r
20 e o f equ −10 ; End of f i l e
21 b u f f _ s i z e equ $10 ; Maximum s i z e o f r e a d b u f f e r
22 o u t _ s i z e equ 73 ; Outpu t s t r i n g l e n g t h
23 s p a c e equ ’ ’ ; 1 s p a c e
24 d o t equ ’ . ’ ; 1 d o t
25 max_char equ $C0 ; H i g h e s t p r i n t a b l e ASCII c h a r a c t e r
26
27 s o u r c e _ i d equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
28 d e s t _ i d equ $06 ; O f f s e t (A7) t o o u t p u t f i l e i d
29 p a r a m _ s i z e equ $0A ; O f f s e t (A7) t o command s t r i n g s i z e
30 param equ $0C ; O f f s e t (A7) t o command b y t e s
31
32 s t a r t
33 b r a Hexdump
34 dc . l $00
35 dc .w $4afb
36
37 name
38 dc .w name_end−name−2
39 dc . b ’Hexdump ’
40
41 name_end equ ∗
42
43 v e r s i o n
44 dc .w vers_end−v e r s i o n −2
45 dc . b ’ V e r s i o n 1 . 0 0 ’
46
47 v e r s _ e n d equ ∗
48
49 i n _ b u f f e r
50 ds . l 4 ; 16 b y t e s r e a d a t a t ime
51
52 o u t _ b u f f e r
53 ds . l 20 ; 80 b y t e s max o u t p u t
54
55 o p e n _ b r a c k e t equ o u t _ b u f f e r +54 ; Where ’ [’ s h o u l d be
56 c l o s e _ b r a c k e t equ o u t _ b u f f e r +71 ; Where ’] ’ s h o u l d be
57
58 ;−−
59 ; S t a c k on e n t r y :
60 ;
61 ; $0c (a7) = b y t e s o f p a r a m e t e r + padding , i f odd l e n g t h . (I g n o r e d)
62 ; $0a (a7) = P a r a m e t e r s i z e word . (I g n o r e d)
63 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
64 ; $02 (a7) = Source f i l e c h a n n e l i d .
65 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
66 ;−−
67 b a d _ p a r a m e t e r
68 moveq # e r r_bp , d0 ; Guess !
69 b r a s u i c i d e ; Die h o r r i b l y
70
71 Hexdump
72 cmpi .w #$02 , (a7) ; Two c h a n n e l s i s a must

29

73 bne . s b a d _ p a r a m e t e r ; Oops
74
75 s t a r t _ l o o p
76 moveq # i n f i n i t e , d3 ; Timeout − p r e s e r v e d t h r o u g h o u t
77 c l r . l d7 ; C u r r e n t l o c a t i o n i n f i l e
78
79 r e a d _ l o o p
80 move . l s o u r c e _ i d (a7) , a0 ; I n p u t c h a n n e l i d
81 l e a i n _ b u f f e r , a1 ; Where t o r e a d t h e d a t a i n t o
82 moveq # b u f f _ s i z e , d2 ; Maximum s i z e o f t h e b u f f e r
83 moveq # i o _ f s t r g , d0 ; Trap u t i l i t y we want
84 t r a p #3 ; Read a chunk of s o u r c e f i l e
85 t s t . l d0 ; Did i t work ?
86 beq . s r ead_ok ; Not EOF yet , c a r r y on
87 cmpi . l # eof , d0 ; EOF?
88 bne e r r o r _ e x i t ; Something bad happened
89 t s t .w d1 ; Any r e m a i n i n g d a t a ?
90 beq a l l _ d o n e ; No , e x i t t h e main loop
91
92 read_ok
93 l e a i n _ b u f f e r , a2 ; Source b u f f e r
94 l e a o u t _ b u f f e r , a1 ; Outpu t b u f f e r
95 moveq #79 , d0 ; 80 b y t e s t o c l e a r
96
97 ;−−
98 ; Space f i l l t h e e n t i r e o u t p u t b u f f e r on each p a s s t h r o u g h t h e loop .
99 ;−−

100 o b _ c l e a r
101 move . b # space , (a1 , d0 .w) ; Space f i l l from t h e end back
102 dbf d0 , o b _ c l e a r ; And do t h e r e s t
103 moveq #0 , d5 ; E x t r a l i n e f e e d c o u n t e r
104
105 ;−−
106 ; Add t h e a d d r e s s t o t h e b u f f e r a s 8 hex c h a r a c t e r s . Then 4 s p a c e s .
107 ;−−
108 h d _ a d d r e s s
109 move . l d7 , d4 ; D4 i s r e q u i r e d h e r e
110 beq . s h d _ c o n t i n u e ; No e x t r a l i n e f e e d a t s t a r t
111 cmpi . b #0 , d7 ; On a 256 Byte boundary ?
112 bne . s h d _ c o n t i n u e ; Nope .
113 move . b # l i n e f e e d , (a1)+ ; Yes , e x t r a l i n e f e e d
114 moveq #1 , d5 ; A d j u s t c o u n t e r
115
116 h d _ c o n t i n u e
117 e x t . l d1 ; C u r e n t l y on ly word s i z e d
118 add . l d1 , d7 ; Update f i l e o f f s e t c o u n t e r
119 b s r h e x _ l ; S t o r e a d d r e s s i n b u f f e r a t A1
120 adda . l #4 , a1 ; Leave 4 s p a c e s
121
122 ;−−
123 ; There might n o t a lways be 16 b y t e s t o c o n v e r t . A d j u s t t h e c o u n t t o
124 ; add g ro up s o f 4 b y t e s t h e n two s p a c e s t o t h e o u t p u t b u f f e r , by
125 ; c o u n t i n g long words and t h e n t h e r e m a i n i n g s p a r e b y t e s .
126 ;−−
127 h d _ d a t a
128 move . l d1 , d0 ; Byte c o u n t e r (l ong s i z e d)

30 Chapter 4. Hexdump Utility

129 d ivu #4 , d0 ; D0 . Low = Long word c o u n t
130 ; ; D0 . High = Byte c o u n t r e m a i n d e r
131 b r a . s h d l _ n e x t ; Sk ip f i r s t t ime
132
133 h d l _ l o o p
134 move . l (a2) + , d4 ; Get a long word
135 b s r . s h e x _ l ; Add hex t o b u f f e r
136 adda . l #2 , a1 ; Leave 2 s p a c e s between g r ou ps
137
138 h d l _ n e x t
139 dbf d0 , h d l _ l o o p ; Do n e x t long word
140
141 swap d0 ; D0 .W = r e m a i n i n g b y t e s (0−3)
142 b r a . s hdb_nex t ; Sk ip f i r s t b y t e
143
144 hdb_loop
145 move . b (a2) + , d4 ; Get a b y t e
146 b s r . s hex_b ; Add t o b u f f e r
147
148 hdb_nex t
149 dbf d0 , hdb_loop ; Do n e x t b y t e
150
151 ;−−
152 ; Because we don ’ t a lways g e t 16 b y t e s , we s im p ly f o r c e A1 t o t h e
153 ; d e s i r e d l o c a t i o n i n t h e o u t p u t b u f f e r .
154 ;−−
155 h d _ a s c i i
156 l e a o p e n _ b r a c k e t , a1 ; where t o p u t t h e ’ [’
157 adda .w d5 , a1 ; A d j u s t f o r e x t r a l i n e f e e d s
158 l e a i n _ b u f f e r , a2 ; Back t o t h e s t a r t o f d a t a
159 move .w d1 , d0 ; Data c o u n t e r
160 move . b # ’ [’ , (a1)+ ; Opening d e l i m i t e r added
161
162 b r a h d a _ n e x t ; Sk ip f i r s t t ime
163
164 hda_ loop
165 move . b (a2) + , d2 ; F e t c h b y t e o f d a t a
166 cmpi . b # space , d2 ; We can p r i n t s p a c e o r h i g h e r on ly
167 bcs . s hda_do t ; Th i s c h a r a c t e r i s n o t ok
168 cmpi . b # max_char , d2 ; Reached t h e c o n t r o l c h a r a c t e r s ?
169 bcs . s h d a _ s t o r e ; No , t h i s one i s f i n e
170
171 hda_do t
172 moveq # dot , d2 ; P r i n t a d o t i n s t e a d
173
174 h d a _ s t o r e
175 move . b d2 , (a1)+ ; Save i n o u t p u t b u f f e r
176
177 h d a _ n e x t
178 dbf d0 , hda_ loop ; And do t h e r e s t
179
180 l e a c l o s e _ b r a c k e t , a1 ; Where t o p u t t h e ’] ’
181 adda .w d5 , a1 ; A d j u s t f o r e x t r a l i n e f e e d s
182 move . b # ’] ’ , (a1)+ ; C l o s i n g d e l i m i t e r added
183 move . b # l i n e f e e d , (a1) ; And l i n e f e e d a t t h e end
184

31

185 h d _ p r i n t
186 moveq # i o _ s s t r g , d0 ; Trap c a l l we want
187 moveq # o u t _ s i z e , d2 ; How many b y t e s ?
188 add .w d5 , d2 ; A d j u s t f o r e x t r a l i n e f e e d s
189 l e a o u t _ b u f f e r , a1 ; Where our s t r i n g i s
190 move . l d e s t _ i d (a7) , a0 ; Outpu t c h a n n e l
191 t r a p #3 ; Do i t
192 t s t . l d0 ; Did i t work ?
193 beq r e a d _ l o o p ; Yes , c o n t i n u e
194
195 e r r o r _ e x i t
196 move . l d0 , d3 ; E r r o r code we want t o r e t u r n
197 b r a . s s u i c i d e ; And d i e
198
199 a l l _ d o n e
200 moveq #0 , d3 ; No e r r o r code
201
202 s u i c i d e
203 moveq # m t _ f r j o b , d0
204 moveq #me , d1 ; Th i s j o b i s a b o u t t o d i e
205 t r a p #1
206
207 ;−−
208 ; The hex c o n v e r s i o n r o u t i n e s i n QDOS a r e c o r r u p t i n some v e r s i o n s so
209 ; t h e s e w i l l work . The t a k e a long , word , b y t e o r n i b b l e i n D4 and
210 ; w r i t e t h e hex b y t e (s) t o a b u f f e r p o i n t e d t o by A1 .
211 ;
212 ; The v a r i o u s r o u t i n e s h e r e c a l l a lower l e v e l one , t h e n drop i n t o
213 ; t h e c a l l e d code a g a i n t o p r o c e s s t h e " o t h e r h a l f " o f t h e d a t a t o be
214 ; c o n v e r t e d .
215 ;−−
216 h e x _ l
217 swap d4 ; We do t h i s i n MS word o r d e r
218 b s r . s hex_w ; Do o r i g i n a l h igh word
219 swap d4 ; Get low word back
220
221 hex_w
222 r o r .w #8 , d4 ; We do t h i s i n MS b y t e o r d e r
223 b s r . s hex_b ; Do o r i g i n a l h igh b y t e
224 r o l .w #8 , d4 ; Get low b y t e back
225
226 hex_b
227 r o r . b #4 , d4 ; We do t h i s i n MS n i b b l e o r d e r
228 b s r . s h e x _ n i b b l e ; Do o r i g i n a l h igh n i b b l e
229 r o l . b #4 , d4 ; Get o r i g i n a l low n i g g l e back
230
231 h e x _ n i b b l e
232 move . b d4 ,−(a7) ; We need t o save t h e b y t e
233 a n d i . b # $0f , d4 ; Mask o u t low n i b b l e
234 a d d i . b # ’0 ’ , d4 ; Assume d i g i t 0−9
235 cmpi . b # ’9 ’ , d4 ; D i g i t ?
236 b l s . s h e x _ s t o r e ; Yes , d i g i t
237 a d d i . b #7 , d4 ; O f f s e t f o r an A−F c h a r a c t e r
238
239 h e x _ s t o r e
240 move . b d4 , (a1)+ ; Add t o t h e b u f f e r a t A1 . L

32 Chapter 4. Hexdump Utility

241 move . b (a7) + , d4 ; R e t r i e v e o r i g i n a l b y t e
242 r t s

Listing 4.2: Hexdump Utility

4.0.5 Hexdump Code Explained

As ever with my code, the first part is a load of bumff explaining briefly, sometimes, what the
program should be doing. This utility is no different! Following on, we have a number of equates
defined. The important ones here should be adequately commented - but we set up various offsets
onto the A7 stack to extract the source file and destination channel ids and, not currently used here,
where we should find the command string, if passed.

Then there is the usual standard QDOS header for a job with the job name embedded and a couple
of buffers. The input buffer is where we read the source file into, 16 bytes at a time. The output
buffer is big enough to hold a printed output line of up to 80 characters. You may note that a
program version has been defined, but is only for my own documentation, it is never display or
used. Feel free to leave it out.

The next couple of equates define the locations in the output buffer where the ’[’ and ’]’ surrounding
the ASCII representation of the hex codes will be.

Just before the main Hexdump code itself, we have the bad_parameter code which is, as you
might expect, used to handle bad parameters - these are when we get less than or more than two
channels on the stack at execution time. The utility simply exits with an error code back to the
caller.

Be aware that you will not see this error code if you EX the utility, only if you call it with EW will
errors be reported back to SuperBasic. This is normal.

Hexdump starts by checking the word on the stack to ensure that we only received two channel ids
on the stack. If this is not the case, we exit via bad_parameter as explained above. Assuming this
is not the case, we preload D3 with an infinite timeout. This is preserved through all trap calls, so
only needs to be done once.

We use D7 as the current offset counter, so we initialise it to zero, as we are still at the start of the
source file.

Read_loop is the start of the main loop. In here, we load the source file’s channel id into A0 and
read the next 16 bytes, maximum, into the input buffer. When we hit end of file, we need to ensure
that the last few remaining bytes are converted to hex - if there was not exactly 16 bytes read when
we hit EOF, they are still valid. We test D1 to be sure that we do have some data to process, if not,
we are truly at EOF and we bale out of the utility passing a zero error code back to the caller.

If there was some other error in the read, ie, not EOF, then we simply bale out and return the error
code to the caller.

Assuming all went well, we enter the code at read_ok where we set up A2 and A1 with the input
and output buffer addresses respectively. As we want spaces in between each section of data in the
output buffer, we fill all 80 bytes with spaces, prior to each conversion, at ob_clear. D5 is cleared
here as well, on each pass, as it counts the number of extra linefeeds that have been injected into
the output buffer - zero or one - and is used to adjust various pointers and counts as necessary.

The code at hd_address copies the current offset from D7 into D4 and if this is the start of the file
- the offset is zero - skips over the next bit. Assuming that this is not the start of the file, we wish
to insert an extra linefeed after every 256 bytes of the input file. This is easy to accomplish as we

33

simply need to check the lowest byte of the offset. If it is zero, then we add a linefeed to the buffer
and set D5 to 1 to show the extra byte. This happens at offsets $0100, $0200, $0300 and so on.

Prior to updating D7 with the count of the bytes just read. For most of the file, this will be 16 but
there may be less at EOF. As the offset in D7 is long sized - we could be dumping large files - we
have to extent D1 from a word to a long prior to the addition. D4 is converted from an offset to
8 hex characters in a call to hex_l which adds the converted characters to the output buffer and
updates A1.

After the address has been added, we wish to have 4 spaces after it, so A1 is incremented by 4 to
account for this. We are now ready to convert the data.

Hd_data is where this happens. The bytes read is copied to D0 as a long word and then divided by
4 to get the number of long words read in. In most cases this will be 4, at least until we get to EOF.
After the division, the low word of D0 holds the number of long words to convert and the high
word holds the remaining bytes to convert afterwards. Each long word is converted by copying it to
D4.L and calling out to the hex_l code again to convert and add it to the buffer as 8 hex characters.
Two spaces are then ‘added’ by incrementing A1 accordingly.

After all the long words are converted, we process the remaining bytes by swapping D0 around so
that the remaining bytes are in the low word, and we loop around those converting them one byte at
a time at hdb_loop.

After all the bytes are processed and added to the buffer, we need to add in the ASCII characters.
Only printable ones will be considered - those between ‘space’ and the down arrow character,
inclusive. Anything less than a space or any of the control characters from $C0 upwards are
represented by a dot.

The first part of the code at hd_ascii adds an opening bracket to the buffer, then the individual
ASCII characters are added, all 16 (usually) of them, then a closing bracket is added to the buffer
followed by a linefeed. If we injected an extra linefeed previously, then D5 is added to the offsets
for the opening and closing brackets to ensure that they are inserted into the buffer at the correct
location.

We then drop into hd_print where we send the completed buffer, to the destination file or channel
before looping around and back to read_loop to do it all again. Once again, the counter in D2
which determines the size of the string to print has to be adjusted to account for any extra linefeeds,
so D5 is added to D2 before the TRAP #3.

In the unlikely event of an error during the conversion to hex, the code at error_exit will be
executed to copy the error code from D0 into D3 prior to returning to the caller. If there were no
errors, then all_done will cause a zero to be returned. The job then kills itself which will cleanly
close the input and output files, flushing any buffers as appropriate.

4.0.6 Hex Conversion

As noted in the comments, certain versions of QDOS, prior to 1.03 I believe, have hex conversion
routines in the ROM, but they are somewhat broken. To this end, I have supplied my own. To use
them, D4 should contain the value to be converted and A1 should point to a location in a buffer,
somewhere, for the results. After conversion, A1 is updated to the next free location in the buffer.

The following is a sample of the output from the utility when used to hexdump an earlier incarnation1

of itself.

1A much earlier version!

34 Chapter 4. Hexdump Utility

00000000 60000078 00000000 4AFB0007 48657864 [‘ . . x J . . . Hexd]
00000010 756D7000 61736D00 00000000 00000000 [ump . asm]
00000020 00000000 00000000 00000000 00000000 [.]
00000030 66EDE055 00010002 00000000 00000000 [f . . U]
00000040 00000000 00000000 00000000 00000000 [.]
00000050 00000000 00000000 00000000 00000000 [.]
00000060 00000000 00000000 00000000 00000000 [.]
00000070 00000000 70 F16000 00C00C57 000266 F4 [. . . . p . ‘W. . f .]
00000080 76 FF4287 206 F0002 43FAFF8A 74107003 [v . B . o . . C . . . t . p .]
00000090 4E434A80 67100C80 FFFFFFF6 66000094 [NCJ . g f . . .]
000000A0 4A416700 009245FA FF6C43FA FF78704F [JAg . . . E . . lC . . xpO]
000000B0 13BC0020 000051C8 FFF82807 48C1DE81 [. Q . . . (. H . . .]
000000C0 617CD3FC 00000004 200180FC 0004600A [a | ‘ .]
000000D0 281A616A D3FC0000 000251C8 FFF44840 [(. a j Q . . .H@]
000000E0 6004181A 616451C8 FFFA43FA FF6E45FA [‘ . . . adQ . . . C . . nE .]
000000 F0 FF243001 12FC005B 60000014 141A0C02 [. $0 [‘]

00000100 00206506 0C0200C0 6502742E 12C251C8 [. e e . t . . . Q .]
00000110 FFEC43FA FF5712FC 005D12BC 000A7007 [. . C . .W . . .] p .]
00000120 744943FA FF00206F 00064 E43 4A806700 [t I C . . . o . . NCJ . g .]
00000130 FF542600 60027600 700572FF 4E414844 [. T & . ‘ . v . p . r .NAHD]
00000140 61024844 E05C6102 E15CE81C 6102E91C [a .HD . \ a . . \ . . a . . .]
00000150 1 F040204 000 F0604 00300C04 00396304 [. 0 . . . 9 c .]
00000160 06040007 12C4181F 4E75 [. Nu]

Listing 4.3: Example Hexdump Output

5. Jump Tables

Imagine that your next great programming wonder is not based on the Pointer Environment, but
does display a menu to the user with a number of options1. Each option can be selected by a single
key press, and your application code has to choose a piece of code, a subroutine, to handle the
user’s choice.

You could do something like the following, where we assume that only the 10 digits are allowed
and that D0.B holds the keypress character from the menu.

1 ;−−
2 main_loop
3 b s r d i sp l ay_menu ; CLS and d i s p l a y t h e menu
4 b s r ge t_menu_op t ion ; Wait f o r a menu c h o i c e
5
6 go t_menu_op t ion
7 cmpi . b # ’0 ’ , d0 ; Zero o r above ?
8 bcs b a d _ o p t i o n ; Oops
9 cmpi . b # ’9 ’ , d0 ; Nine o r below ?

10 bcc b a d _ o p t i o n ; Oops
11
12 g o t _ g o o d _ o p t i o n
13 cmpi . b # ’0 ’ , d0
14 beq o p t i o n _ 0 ; P r o c e s s o p t i o n ’0 ’
15 cmpi . b # ’1 ’ , d0
16 beq o p t i o n _ 1 ; P r o c e s s o p t i o n ’1 ’
17 . . .
18 . . .
19 cmpi . b # ’8 ’ , d0
20 beq o p t i o n _ 8 ; P r o c e s s o p t i o n ’8 ’
21 cmpi . b # ’9 ’ , d0 ; Not s t r i c t l y r e q u i r e d , b u t s a f e
22 beq o p t i o n _ 9 ; P r o c e s s o p t i o n ’9 ’
23

1It wouldn’t be much of a menu otherwise, would it? :-)

36 Chapter 5. Jump Tables

24 o p t i o n _ r e t u r n
25 ; do some p o s t r o u t i n e c l e a n up h e r e
26 . . .
27 . . .
28 b r a main_loop ; Ready f o r t h e n e x t o p t i o n
29
30 o p t i o n _ 0
31 ; P r o c e s s o p t i o n z e r o h e r e .
32 . . .
33 b r a o p t i o n _ r e t u r n ; Back t o t h e main loop
34
35 o p t i o n _ 1
36 ; P r o c e s s o p t i o n one h e r e .
37 . . .
38 b r a o p t i o n _ r e t u r n ; Back t o t h e main loop
39 . . .
40 . . .
41 ;−−

Listing 5.1: Processing User Options - First Attempt

Ignoring the fact that there are numerous helper routines called, but not shown in the above example,
then we can see that the above is quite simple to read and is fine for a small number of options.
However, note that none of the option handling subroutines can use an RTS instruction to exit, as
the call to the subroutine was by way of a BEQ instruction. They must therefore execute a bra

option_return to get back into the clean up code and back to the main loop.

We could improve matters slightly and use the PEA here to set up a pseudo subroutine call, by
pushing the common_return address onto the stack prior to calling any of the subroutines, as
follows.

1 ;−−
2 main_loop
3 b s r d i sp l ay_menu ; CLS and d i s p l a y t h e menu
4 b s r ge t_menu_op t ion ; Wait f o r a menu c h o i c e
5
6 go t_menu_op t ion
7 cmpi . b # ’0 ’ , d0 ; Zero o r above ?
8 bcs b a d _ o p t i o n ; Oops
9 cmpi . b # ’9 ’ , d0 ; Nine o r below ?

10 bcc b a d _ o p t i o n ; Oops
11
12 g o t _ g o o d _ o p t i o n
13 pea o p t i o n _ r e t u r n ; S t a c k a " r e t u r n " a d d r e s s
14
15 cmpi . b # ’0 ’ , d0
16 beq o p t i o n _ 0 ; P r o c e s s o p t i o n ’0 ’
17 . . .
18 . . .
19 cmpi . b # ’9 ’ , d0 ; Not s t r i c t l y r e q u i r e d , b u t s a f e
20 beq o p t i o n _ 9 ; P r o c e s s o p t i o n ’9 ’
21
22 o p t i o n _ r e t u r n
23 ; do some p o s t r o u t i n e c l e a n up h e r e
24 . . .
25 . . .
26 b r a main_loop ; Ready f o r t h e n e x t o p t i o n

37

27
28 o p t i o n _ 0
29 ; P r o c e s s o p t i o n z e r o h e r e .
30 . . .
31 r t s ; Back t o o p t i o n _ r e t u r n
32
33 o p t i o n _ 1
34 ; P r o c e s s o p t i o n one h e r e .
35 . . .
36 r t s ; Back t o o p t i o n _ r e t u r n
37
38 . . .
39 . . .
40 ;−−

Listing 5.2: Processing User Options - Improved First Attempt

This version is a lot better, while we are still calling the subroutines with a BEQ instruction, we have
fiddled the stack by pushing a common return address onto it when we know we have a valid menu
option. When each individual subroutine executes the RTS at the end, it will pop the address of
option_return and continue executing from there.

We could, if we wished to use the actual BSR instruction, perhaps to avoid confusion, code something
like the following.

1 ;−−
2 main_loop
3 b s r d i sp l ay_menu ; CLS and d i s p l a y t h e menu
4 b s r ge t_menu_op t ion ; Wait f o r a menu c h o i c e
5
6 go t_menu_op t ion
7 cmpi . b # ’0 ’ , d0 ; Zero o r above ?
8 bcs b a d _ o p t i o n ; Oops
9 cmpi . b # ’9 ’ , d0 ; Nine o r below ?

10 bcc b a d _ o p t i o n ; Oops
11
12 g o t _ g o o d _ o p t i o n
13 cmpi . b # ’0 ’ , d0
14 bne . s g g o _ t r y _ 1 ; Not z e r o
15 b s r o p t i o n _ 0 ; P r o c e s s o p t i o n ’0 ’
16 b r a o p t i o n _ r e t u r n ; Do c l e a n u p
17
18 g g o _ t r y _ 1
19 cmpi . b # ’1 ’ , d0
20 bne . s g g o _ t r y _ 2 ; Not ’1 ’
21 b s r o p t i o n _ 1 ; P r o c e s s o p t i o n ’1 ’
22 b r a o p t i o n _ r e t u r n ; Do c l e a n u p
23
24 . . .
25 . . .
26 g g o _ t r y _ 8
27 cmpi . b # ’8 ’ , d0
28 bne . s g g o _ t r y _ 9 ; Not ’8 ’
29 b s r o p t i o n _ 8 ; P r o c e s s o p t i o n ’8 ’
30 b r a o p t i o n _ r e t u r n ; Do c l e a n u p
31
32 g g o _ t r y _ 9

38 Chapter 5. Jump Tables

33 cmpi . b # ’9 ’ , d0 ; Not s t r i c t l y r e q u i r e d , b u t s a f e
34 bne . s o p t i o n _ r e t u r n ; Not ’9 ’
35 b s r o p t i o n _ 9 ; P r o c e s s o p t i o n ’9 ’
36 b r a o p t i o n _ r e t u r n ; Do c l e a n u p
37
38 o p t i o n _ r e t u r n
39 ; do some p o s t r o u t i n e c l e a n up h e r e
40 . . .
41 . . .
42 b r a main_loop ; Ready f o r t h e n e x t o p t i o n
43
44 o p t i o n _ 0
45 ; P r o c e s s o p t i o n z e r o h e r e .
46 . . .
47 r t s
48
49 o p t i o n _ 1
50 ; P r o c e s s o p t i o n one h e r e .
51 . . .
52 r t s
53
54 . . .
55 . . .
56 ;−−

Listing 5.3: Processing User Options - Another Improved First Attempt

So, in this version, we are using the BSR instruction that we wanted to, but now we’ve had to invert
all the flag checks after the cmpi.b #whatever,d0 and add in numerous new labels and branches,
plus, after a successful return from the subroutine, we need an explicit branch to the clean up code
at the bottom of the loop. It’s all getting rather messy now.

You can imagine that as we add more and more menu options, that adding in new subroutines etc
could get a bit frantic, especially trying to remember to do all the branches etc. In addition, there’s
much more typing, and, if you type like I do, too much room for errors!2

Jump tables are easily set up, and can make life so much easier, with a lot less typing, although, it
could be said that they are slightly less easily understood3.

1 ;−−
2 JumpTable
3 dc .w op t ion_0−JumpTable
4 dc .w op t ion_1−JumpTable
5 dc .w op t ion_2−JumpTable
6 dc .w op t ion_3−JumpTable
7 dc .w op t ion_4−JumpTable
8 dc .w op t ion_5−JumpTable
9 dc .w op t ion_6−JumpTable

10 dc .w op t ion_7−JumpTable
11 dc .w op t ion_8−JumpTable
12 dc .w op t ion_9−JumpTable
13
14 main_loop

2I’ve been in the IT business since around 1982, I still cannot touch type, I have to look at the keyboard to see where
the next key I want is hiding!

3At least until you begin to understand exactly how useful they really are!

39

15 b s r d i sp l ay_menu ; CLS and d i s p l a y t h e menu
16 b s r ge t_menu_op t ion ; Wait f o r a menu c h o i c e
17
18 go t_menu_op t ion
19 cmpi . b # ’0 ’ , d0 ; Zero o r above ?
20 bcs b a d _ o p t i o n ; Oops
21 cmpi . b # ’9 ’ , d0 ; Nine o r below ?
22 bcc b a d _ o p t i o n ; Oops
23
24 g o t _ g o o d _ o p t i o n
25 subq . b # ’0 ’ , d0 ; D0 . B = 0 t o 9 as a number
26 e x t .w d0 ; Now e x t e n d t o a word
27 l s l .w #1 , d0 ; Conve r t t o a t a b l e o f f s e t
28 l e a JumpTable , a2 ; Where t h e jump t a b l e l i v e s
29 j s r (a2 , d0 .w) ; Jump t o t h e c o r r e c t s u b r o u t i n e
30
31 o p t i o n _ r e t u r n
32 ; do some p o s t r o u t i n e c l e a n up h e r e
33 . . .
34 . . .
35 b r a main_loop ; Ready f o r t h e n e x t o p t i o n
36
37 o p t i o n _ 0
38 ; P r o c e s s o p t i o n z e r o h e r e .
39 . . .
40 r t s
41
42 o p t i o n _ 1
43 ; P r o c e s s o p t i o n one h e r e .
44 . . .
45 r t s
46
47 . . .
48 . . .
49 ;−−

Listing 5.4: Processing User Options - Jump Tables

Each entry in the table surprisingly names JumpTable is a word sized signed offset to the desired
routine, from the start of the table itself. This allows for subroutines that are located prior to, or
after, the jump table being defined. Negative offsets are to subroutines defined before the table, and
positive offsets are to subroutines defined after the jump table. Simple?

You can see how much less code there is at the label got_good_option. At that point all we have
to do is convert D0.B from a byte, containing one of the characters ‘0’ through ‘9’, into a word
containing the numeric value zero to nine, as opposed to the character ‘0’ to ‘9’, then double it as
each entry in the table takes two bytes. The offset to the option_0 subroutine is at JumpTable + 0,
while that for the option_1 subroutine is at JumpTable + 2 and so on.

Obviously, the code at main_loop is executed without passing through the preceding jump table,
or who knows what might happen! Jump tables are data, not code.

The jsr (a2,d0.w) takes care of calling the correct routine, as A2 is pre-loaded with the address
of JumpTable. On return, we drop into the clean up code and pass back to the main loop start
again. Remember, D0.W will be sign extended to a long word prior to adding it to A2.L.

40 Chapter 5. Jump Tables

Adding new options is a simple matter of inserting or appending a new entry to the jump table in
the correct place, and making sure that D0.W is set equal to the offset in the jump table, so that
when we execute the jsr (a2,d0.w) instruction, we get the correct subroutine address.

5.0.7 What About Missing Options

So far so good, our table holds one subroutine offset for each menu option from ‘0’ to ‘9’, which
gets translated to a value between 0 and 9, and subsequently, into an offset into the table of offset
words4. What do we do if, for example, option 5 is not actually allowed? We have a couple of
choices:

• Filter out the illegal option(s) when checking for a valid choice.
• Use a ‘do nothing’ entry for the invalid choice(s) in the table.
• Use a zero offset in the table,test for it in the and don’t jump if that is found.

The first option is obviously the best as it gives you the opportunity to advise the user of their error
when they try to make an invalid choice. The last option would require a slight change to the code
at got_good_option, as follows:

1 g o t _ g o o d _ o p t i o n
2 subq . b # ’0 ’ , d0 ; D0 . B = 0 t o 9 as a number
3 e x t .w d0 ; Now e x t e n d t o a word
4 l s l .w #1 , d0 ; Conve r t t o a t a b l e o f f s e t
5 l e a JumpTable , a2 ; Where t h e jump t a b l e l i v e s
6 t s t .w (a2 , d0 .w) ; V a l i d o f f s e t ?
7 beq . s no_jump ; No , do n o t h i n g
8 j s r (a2 , d0 .w) ; Jump t o t h e c o r r e c t s u b r o u t i n e

Listing 5.5: Processing User Options - Jump Tables

The code at label no_jump would do whatever is required prior to the next pass through the main
loop.

4Ugh! Too many offsets in that sentence!

6. Using the MC68020 Instructions

As you may be aware, in all of the articles I published in QL Today over the years, and in the
preceding issues of this randomly occurring eMagazine, I’ve been a loyal user of George’s Gwasl
assembler. This worked well on old black box QLs but who is using one of those these days?
Anyone?

It is time to move on from the toys and playthings of childhood and become a real [wo]man. From
the next issue, issue 4, we are going to switch to George’s other assembler, Gwass and get down
and dirty using the 68020 instructions. If you are using QPC, then you are already able to use them
as George had a hand in getting QPC running on an emulated 68020 rather than a simple 68008 as
the old Black Boxes used to run.

How many of my readers will this upset I wonder? Table 6.1 gives details of which computer or
emulator can handle the new instructions.

Computer Processor Comments

QL 68008 Cannot use the new instructions.
QPC 68020 Able to use the new instructions.
Others 68008 Cannot use the new instructions

Table 6.1: Emulators and the 68020

This is a problem perhaps? Does anyone not use QPC for their main “QL on a PC”? Would some
or all of my readers be missing out if I went down this route?

You better let me know, soon(ish) at the usual email address assembly@qdosmsq.dunbar-it.co.
uk.

assembly@qdosmsq.dunbar-it.co.uk
assembly@qdosmsq.dunbar-it.co.uk

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 Bubble Sorts
	2.0.1 Useful Improvements

	3 Printing Multiple Strings at Once
	3.0.2 Stacking D7 Twice? Why?
	3.0.3 Testing MultiPrint

	4 Hexdump Utility
	4.0.4 Hexdump Listing
	4.0.5 Hexdump Code Explained
	4.0.6 Hex Conversion

	5 Jump Tables
	5.0.7 What About Missing Options

	6 Using the MC68020 Instructions
	Index

