
 CONTENTS
 0 An Overview
 1 About QMON
 2 QMON Commands
 2.1 Addresses
 2.2 Conditions
 2.3 Escape
 3 Invoking QMON
 3.1 Examples of invoking QMON
 4 Concepts
 4.1 Trace
 4.2 Breakpoints
 4.3 Exceptions
 4.4 Trap #4
 5 Assembler format
 6 Command Reference
 6.1 Go
 6.2 Trace
 6.3 Recall
 6.4 Trace Level
 6.5 Breakpoints
 6.6 Display
 6.7 Set
 6.8 Modify
 6.9 Edit
 6.10 Find
 6.11 Open
 6.12 Calculate
 6.13 Macro Command
 7 Examples of Use
 7.1 SuperBASIC Extensions I
 7.2 SuperBASIC Extensions II
 7.3 SuperBASIC Extensions III
 7.4 Executable Programs
 8 Quick Reference Guide
 9 Job Control Extensions
 10 QMON Version Updates
 10.1 Minerva
 10.2 Pointer Environment
 10.3 Gold card / Atari ST
 10.4 General
 11 General Structure of QMON
 11.1 Setup
 11.2 Exception processing
 11.3 Commands
 11.4 Assembler / disassembler
 11.5 QMON utilities
 11.6 SuperBASIC utilities
 11.7 Impure code
 11.8 Register usage

Copyright Tony Tebby and Jan Jones 1985. All rights reserved.
Unauthorised copying, hiring, lending or sale and repurchase prohibited.
QL, QDOS and SuperBASIC are trademarks of Sinclair Research Ltd.

0 An Overview
QMON II is a low level monitor/debugger designed specifically for the QL
and its operating system QDOS. It is ideally suited to the task of
checking and debugging assembly language programs, and extensions to the
SuperBASIC interpreter. Even if you already have a monitor/debugger for
your QL, QMON II will provide extra assembly language programming power.
QMON can also be used to monitor programs written in high level
languages.

QMON is designed to integrate into the QDOS environment. This makes it
possible to monitor just one job in the QL, or all the jobs that are
executing. While tracing a job, QMON will normally skip the entries into
QDOS, but it can trace right through QDOS. QMON does not interfere with
QDOS so it is entirely feasible to examine one job in the QL, while
other jobs continue unimpeded.

QMON has an extensive range of facilities including a window based
memory editor, single- and multi- stepping, tracing and back-tracing
with fixed and conditional breakpoints, as well as a macro command
facility for tracing and patching, together with an unusually powerful
set of commands for examining and altering machine code and data.

Despite its wide range of facilities QMON is very compact. The program
includes a complete MC68008 single line assembler, editor and
disassembler, occupies only 11k bytes, while a reduced version is
included which takes 5k bytes.1 About QMON

QMON is a tool to assist software developers. It is not intended as an
aid to pirating other people's software or circumventing any of the
mechanisms for protecting software. For this reason, there are some
facilities, which could have been included, which have been omitted.
This should not affect the use of QMON for legitimate purposes.

QMON is supplied on a Microdrive cartridge or floppy disk with a number
of files:

 BOOT SuperBASIC program to load QMON_BIN
 QMON SuperBASIC program to load QMON_BIN
 QMON_BIN the QMON resident debugger
 JOB SuperBASIC program to load JOB_BIN
 JOB_BIN job control extensions to SuperBASIC
 CLOCKS configurable clock program
 CLOCKS_LIST assembly listing of clocks

The job control extensions and the configurable clock are supplied
primarily as examples for learning to use QMON. But the job control
extensions are also valuable for program development.
Before going any further please make a backup copy of the disk or
cartridge, using WCOPY or similar (or our Transfer Utility!). Archive
the original and use only the backup. This program is protected by
international copyright law - do not break it.
If we have anything to add to the manual, we will put a Quill
UPDATES_DOC on the medium.

2 QMON Commands

Commands may be in either upper or lower case. In general a command
consists of a one or two letter abbreviation, followed by an optional
channel number (which specifies where the output, if any, from the
command will be sent) and some parameters separated by spaces:

 D1 28000 10

 Display on channel 1 from address 28000 10 (hex) bytes

In most cases, most or all of the parameters are optional. Thus, after
the example above, new defaults for the display command are set so that:

 D1 has the same effect as

 D1 28010 10

 Display on channel 1 from next address the same number

Note that, in QMON commands, a number is assumed to be hexadecimal to
make the handling of data structures simpler, while the assembler
assumes that a number is decimal. This is Motorola standard and it
avoids confusion between, for example, register D2 and the address $D2.
Throughout, QMON will accept hexadecimal numbers starting with $ (e.g.
$28000, the system variable base) and decimal numbers starting with &
(e.g. &131072, the base address of the screen). The command handling of
QMON will accept simple arithmetic expressions in both hexadecimal and
decimal, and there is a command to calculate the value of an expression
and print it in both (unsigned) decimal and (unsigned) hexadecimal.

In this document, the parts of commands which are printed in upper case
are the actual characters typed, those parts in lower case are symbolic
while square brackets ([...]) are used to denote optional parameters. A
lower case 'c' is used to denote the optional channel number.

<ESC> denotes the key marked ESC, <ENTER> denotes the key marked ENTER
and <CTRL> denotes the key marked CTRL.

<ENTER> will cause a line to be actioned, while <ESC> and the up and
down arrows will abandon the current line.

When typing commands, errors may be corrected in the same way as for the
standard line editing on the QL. The left and right arrows move the
cursor, while in conjunction with <CTRL> they delete characters.

Execution (GO, TRACE and QUICK TRACE)

 G GO from current instruction
 G address GO from address
 GB address GO until breakpoint at address
 GB address condition GO until condition at breakpoint
 GR GO until return
 Tc TRACE one instruction
 Tc number TRACE number of instructions
 TUc condition TRACE until condition
 TBc address TRACE until breakpoint at address
 TBc address condition TRACE until condition at breakpoint
 TRc TRACE until return
 Q number QUICK number of instructions
 QU condition QUICK until condition
 QB address QUICK until breakpoint at address
 QB address condition QUICK until condition at breakpoint
 QR QUICK until return
 <ENTER> TRACE or QUICK trace
Trace Recall

 RS number creates buffer for number of steps
 Rc recall last step
 <ENTER> recall previous step

Trace Level

 LU traces user mode code only, GOes when
 trace enters a trap (default)
 LS traces supervisor mode code as well as
 user mode code

Breakpoint Control

 B [addresses] toggle breakpoint(s) and list them
 BC clear all breakpoints

Display Registers or Memory

 Dc [address [number]] display memory (in hex and ASCII)
 DIc [address [number] display instructions in memory
 DRc display registers
 <ENTER> continue display

Set Registers or Memory

 SB address byte set byte in memory
 SW address word set word in memory
 SL address long_word set long word in memory
 SDn value set data register
 SAn value set address register
 SSP value set appropriate stack pointer
 SUSP value set USP (user stack pointer)
 SSSP value set SSP (supervisor stack pointer)
 SSR value set SR (status register)
 SPC value set PC (program counter)

Modify Memory

 MBc [address] modify memory in bytes
 MWc [address] modify memory in words
 MLc [address] modify memory in long words
 MIc [address] modify instructions in memory

Edit Memory

 Ec [address] edit memory

Find in Memory

 F value [range] find a matching string of bytes.
 F 'string' [range] find a matching string of characters
 FI 'string' [range] find string in an instruction
 F or FI continue search

Open Auxiliary Channels

 Oc name opens 'name' as channel 'c'
 Oc closes channel 'c'

Calculate Address

 C address calculates address and displays it
Macro Command

 CS set macro command
 CT execute command every trace step
 CB address execute command at breakpoint
 CC clear CT or CB
 CX execute command

2.1 Addresses

Addresses (and most other values) may be given as a simple expression
followed by an index. The expression must only include addition and
subtraction, and the index may be one or more registers. All 32 bits of
a register are used in calculating an address. The are some special
addresses which may be used in the expression:

 * current PC (address of next instruction)
 L address used by the last display command

 N default next address
 S start address of job

The 'last address' is set by the display (D and DI) commands, modify
(MB, MW, ML and MI) commands, and edit (E) command, the 'next address'
is set by the find (F and FI) commands as well as by the display (D and
DI) and modify (MB, MW, ML and MI) commands.

 L-10 $10 bytes before the last display address
 N the next display address
 *+2 2 bytes on from PC
 4(A1) contents of A1 plus 4
 (A6,D2) contents of A6 plus the contents of D2
 100(A6,A1,D2) $100 more than A6 plus A1 plus d2

2.2 Conditions

A number of the execution control commands (GO, TRACE and QUICK) use a
condition to determine whether to stop execution. The condition is of
the form 'register=value' or 'address=value'. The value is assumed to be
a word unless it is followed by '.B' for a byte, '.W' for a word or '.L'
for a long word. The '=' may be replaced by a '<' for a less than
condition, or '>' for a greater than condition. This condition is
checked after every instruction during TRACE, or, if there is a
temporary breakpoint, the condition is checked at the conditional
breakpoint.

2.3 Escape

While tracing and while displaying memory, QMON checks the ESC key. If
the key is found to be depressed, the command is terminated.

To ensure that the ESC key is detected, it should be held down until the
trace or display stops.

ESC is also used to terminate MODIFY sequences, or to cancel command
which has not yet been ENTERed.

3 Invoking QMON

QMON will be most effective if the QL is running in 4 colour mode as it
will be possible to display more information than in the 8 colour mode.

QMON is a resident debugger and may be loaded into the QL without having
any effect on the operation of the QL. QMON becomes active when invoked
from SuperBASIC and remains active until the QL is reset or the job for
which QMON was invoked is removed from the QL.

The QMON cartridge or diskette has a boot file and if this is in drive 1
when the QL is reset, QMON will be automatically loaded. Otherwise QMON
may loaded by putting the cartridge or diskette in drive 1 and typing:

 LRUN "FLP1_QMON" (or LRUN "MDV1_QMON") or LRESPR "QMON_BIN")

QMON may now be invoked for job 0 (the SuperBASIC interpreter) by
typing:

 QMON

This will produce the prompt 'Qmon>' in window zero. All the QMON
commands may now be used. To allow the BASIC interpreter to continue the
simple command 'g' (GO) should be used.

 QMON (invoke QMON)
 Qmon> D 28000 (display the first few system vars)
 28000 D254 0000 0002 8E00 0000 00FC 0002 9800 .T..........
 28010 0003 CA00 0003 DC00 0000 0000 0003 DC00
 28020 0004 0000 0000 0000 0000 0000 0000 212B
 28030 0000 0000 00C0 0001 0000 0000 0000 2CF8
 Qmon> G (GO)

The input and output of QMON will usually share the screen channels of
the SuperBASIC interpreter. Other screen channels may be used for both
input and output, and other devices (such as a printer or a file on a
microdrive or diskette) may be used for displaying memory, or trace
output. As the channels are usually shared with SuperBASIC, there may be
some conflict. This is reduced by suspending SuperBASIC. SuperBASIC may
be released using the normal CTRL SPACE keystroke, and may be suspended
with the QMON_W command. The QMON_W command has no other effect.

QMON recognises 4 channels. There is a primary channel which is used for
all commands, and it is in this channel that QMON will produce the
register display at a breakpoint or other exception. It is also the
default channel used for memory displays, etc. Each job monitored by
QMON has its own primary channel. The other three channels (1 to 3) are
shared by all jobs being monitored and are used for displaying memory,
or for listing the short trace.

QMON by default will trace job 0 (the BASIC interpreter) in channel #0
of the SuperBASIC interpreter. If another job is to be traced, then its
default primary channel will be #1.

The primary channel for QMON may be either a normal CONsole window of it
may be a special transient window. The transient window appears when
QMON is entered to write something to the window, the area of the screen
occupied by the window having been saved in the heap. When QMON is left
by an execution command (GO or TRACE), then the original contents of the
screen are restored. There are 5 five-line transient windows spaced down
the screen: window 0 is at the top, while window 4 is at the bottom. In
order to be able to get a reasonable amount of information displayed in
the transient window, the display mode is set to 512 pixel mode while a
transient window is visible.
QMON may be invoked for a job already executing in the QL, or it may
load and start a job itself.

The command to invoke QMON has a number of forms:

 QMON monitor job 0
 QMON [channel] name load program 'name' and monitor it
 QMON [channel] number invoke or re-enter QMON for job number

The channel may be omitted, in which case, if this is the first time
QMON has been invoked for the job, the default primary channel will be
used, otherwise the previously used primary channel will be used.

The channel or device must be a CON device. There are three ways in
which the channel may be specified:

 #number, a SuperBASIC channel number
 name, the name of a console device
 number\ a transient window number

The job number may be found using the JOBS command in the job control
extensions provided with QMON. However a good guess would be that the
job number will be 1 if it is the only job other than the SuperBASIC
interpreter.

3.1 Examples of invoking QMON

 QMON monitor job 0 in window #0
 QMON #2,3 monitor job 3 in window #2
 QMON CON_256x70a0x0,1 monitor job 1 in a small window
 QMON FLP1_clocks set up clocks program and monitor in window #1
 QMON 0\FLP1_clocks set up clocks program and monitor in the
transient window at the top of the screen

If QMON has already been invoked for a job and that job creates a
daughter job, then the daughter job will share the QMON working area
with the parent until QMON is invoked for the daughter.4 Concepts

4.1 Trace

Instructions executed by the MC68008 microprocessor in the QL are traced
by QMON using the built-in trace facility in the processor. If the trace
flag is set, then every time the processor executes an instruction, QMON
is called by QDOS. The trace flag is in the status register and is
maintained by QDOS for each job. It is therefore possible to trace some
jobs in the QL while others continue to run quite normally.

QMON has two trace modes: in the normal trace mode the next instruction
to be executed is written to the trace window after every step while in
the 'quick trace' mode there is no visible sign that an instruction has
been executed. In both modes, however, the conditions that govern the
termination of the trace are checked every step. These conditions are
one or more of

 a count of instructions executed,
 a check on a register or memory value,
 one or more breakpoints.

4.2 Breakpoints

A breakpoint is an address which is stored in QMON. The job being
monitored by QMON will be stopped when the address of the next
instruction to be executed is the same as the address of one of the
breakpoints.

QMON handles up to six normal breakpoints as well as one special command
breakpoint and one temporary breakpoint.

Breakpoints are handled in two ways in QMON. The first way is used with
the 'GO' commands. For each breakpoint the first (or only) two bytes of
the instruction are saved in the QMON working area for the job, and the
illegal instruction '$4AFB' is substituted. To ensure that the first
instruction after a 'GO' command is actually executed, even if it is a
breakpoint, QMON does one invisible trace step before the breakpoints
are actually set.

This mechanism will clearly not work if the code being executed is in
read only memory and cannot be changed. The 'TRACE' commands use a
different mechanism: the code is not modified to mark breakpoints, but
the breakpoint list is checked after every step to see if the address of
the next instruction is the same as one of the breakpoints. Whereas
setting a breakpoint for a 'GO' command does not influence the speed of
execution of a job (until it actually stops!), even 'quick trace' can
slow down the execution of a job by a factor of 50.

4.3 Exceptions

The MC68008 processor has two modes of operation, user mode and
supervisor mode. Applications programs execute their own instructions in

user mode, while 'privileged' code (e.g. the operating system functions)
execute in supervisor mode. Code executing in supervisor mode has its
own stack (the supervisor stack) and so QDOS extends the concept of
privilege to mean that a job executing in supervisor mode cannot be
interrupted by the scheduler to allow another job to execute. This means
that there need only be one supervisor stack for all jobs resulting in a
considerable reduction in overheads per job by comparison with other
multi-tasking operating systems for the MC68000 type of processor.

The mode of operation of the MC68008 is changed to supervisor mode by an
exception. Exceptions range from the unpredictable (one of the external
interrupts) through the accidental (e.g. illegal instruction) to the
controlled (e.g. the trap instructions). QDOS itself is entered by trap
instructions and so executes in supervisor mode. QMON is also entered by
exceptions and so it, too, executes in supervisor mode. It does not,
therefore, use or modify any of the user stack of any job being
monitored. However, to allow the QL to continue running other jobs while
one is being monitored, QMON reverts to the job's own mode while it is
idling waiting for input or output. If QMON is idling in supervisor mode
the cursor will not be flashing.

It will not usually be necessary to trace the execution of QDOS traps,
so provision is made in QMON to detect a change to supervisor mode
during trace and 'GO' automatically. As the status register will now be
saved with the trace flag set, when QDOS returns control to the to the
application code, the trace will be restored. Unfortunately, the trace
will not be activated until one instruction after the trap.

There should rarely be any need to trace supervisor mode code, but if
this is to be done then the trace level may be set to supervisor. While
QMON is monitoring supervisor mode code, no attempt should be made to
display memory or to send trace output to one of the serial ports. The
microdrives or floppy disks may, however, still be used.
If QMON is being used to trace a QDOS entry, then a GO instruction will
GO until the status register is restored on exit from QDOS.

The exception vector used by QDOS during IO subsystem retries is not
defined. If you wish to breakpoint or trace the operation of a device
driver when handling IO with non-zero timeout, then you should ensure
that all jobs executing have had QMON invoked, or, preferably, that the
SuperBASIC interpreter is the only job executing.

When QMON is invoked, it creates an exception redirection vector so that
QDOS will pass control to QMON when certain exceptions occur. If a job
already has an exception vector set up (e.g. to action divide checks)
then not all of the QMON exceptions will be redirected. In some cases,
if the pointer in the vector does not point directly to an RTE (return
from exception) instruction, then the original pointer will be copied
into the new vector.

Exceptions not in the following list are irrelevant to the QL and are
neither actioned by QDOS nor redirected.

 Exception Name Action
 Address Error Add.er always redirected to QMON
 Illegal Instruction Il.ins always redirected to QMON
 Zero Divide Zero.d pointer copied from old vector
 CHK Instruction Chk pointer copied from old vector
 TRAPV Instruction Trapv pointer copied from old vector
 Privilege Violation Priv.v always redirected to QMON
 Trace always redirected to QMON
 Level 2 Interrupt handled by QDOS
 Level 7 Interrupt Int 7 always redirected to QMON
 Trap #0 to Trap #4 handled by QDOS

 Trap #5 to Trap #15 Trapn pointer copied from old vector

When QMON is entered by one of these exceptions, the exception name is
written to the primary channel, followed by a register display. If the
entry was at a breakpoint, then 'At brp' is written instead of 'Il.ins'

4.4 Trap #4

Execution of a Trap #4 causes problems for a QDOS monitor. If the
monitor uses any IO operation after a Trap #4 and before the following
#2 or Trap #3, then the action of the Trap #4 will be transferred to the
monitor with unpredictable results. For this reason an attempt to trace
past a Trap #4 will cause the monitor to enter quick trace mode until
the following Trap #2 or Trap #3 has been executed. Ideally the trace
level should be set to user. There should be no breakpoints in between
the Traps. When single stepping, if the next instruction is a Trap #4,
then 'T' should be safe, but 'G' should only be used if it is essential
to monitor the execution of the instructions between the Trap #4 and the
following Trap #2 or Trap #3.

5 Assembler Format

The assembler and disassembler use Motorola format instructions. The
assembler will accept the general form of those instructions which have
more than one particular form (e.g. ADD may be used in place of ADDI and
ADDA). One limitation is that it is necessary to specify the length of a
direct address (e.g. TST.B $280E0.L or MOVE.L $110.W,A2). The
disassembler produces instructions in the particular form (e.g. ADDA or
ADDI rather than ADD).

The assembler does not accept expressions. Hexadecimal values or
addresses should be preceded by $.6 Command Reference

6.1 GO
 G GO from next instruction
 G address GO from address
 GB address set temporary breakpoint and GO
 GB address condition GO until condition at breakpoint
 GR GO until return

The GO instructions trace one step invisibly then set $4AFB (illegal
instruction) at each breakpoint, clear the trace flag and continue
execution of the job being monitored. In all cases execution will cease
if QMON is entered by an exception (other than a breakpoint) or at a
normal breakpoint. In the case of GB with a condition, if the condition
is not met at the temporary breakpoint, then execution will continue.

 G GO from next instruction.
 G 3FC50 set program counter to $3FC50 and GO.
 GB *+6 set the temporary breakpoint at 6
 bytes on from the next instruction
 and GO from the next instruction.
 GB 3FD46 D1=4 set the temporary breakpoint at $3FD46
 and GO from the next instruction. If
 the condition (D1.W=4) is not met when
 the instruction at the temporary
 breakpoint address is about to be
 executed, the temporary breakpoint
 remains set and execution continues.
 Execution will cease when either the
 condition is met at the temporary
 breakpoint address, or QMON is entered

 at one of the permanent breakpoints.
 GR trace one instruction then set the
 temporary breakpoint at the (return)
 address to be found on the stack and
 then continue.
 If the next instruction is at address
 $3EFC0 and it is a BSR.L, after this
 is executed, the address $3EFC4 will
 be on the stack. Thus the breakpoint
 is set on the first instruction to be
 executed after a normal return.

6.2 TRACE

 Tc [number] TRACE [number of instructions]
 Q [number] QUICK [number of instructions]
 TUc condition TRACE until condition
 QU condition QUICK until condition
 TBc address TRACE until breakpoint
 QB address QUICK until breakpoint
 TBc address condition TRACE until condition at breakpoint
 QB address condition QUICK until condition at breakpoint
 TRc TRACE until return
 QR QUICK until return

The TRACE instructions set the trace flag and execute the next
instruction. If the command was TRACE rather than QUICK and there is
more than one instruction to be traced, then the address of next
instruction and the instruction itself are written to the channel 'c'.
If 'c' is given, it should be in the range 1 to 3. TRACE and QUICK will
continue until the trace count is exceeded, the next instruction is at a
breakpoint, another exception occurs or the <ESC> is pressed.
 T trace one instruction.
 T 20 trace $20 instructions.
 T2 10 trace $10 instructions, writing the
 instructions executed to channel 2.
 QU D0=0 trace invisibly until the condition
 (D0.W=0) is met.
 TB 3FD46 set the temporary breakpoint at $3FD46
 and trace until next instruction
 is at a breakpoint.
 TB3 3FD46 (a1)=20.b set the temporary breakpoint at $3FD46
 and trace (to channel 3) until the
 the byte at the address currently in
 a1 is $20 and the program counter is
 at the temporary breakpoint.
 QR trace one instruction then set the
 temporary breakpoint at the (return)
 address to be found on the stack and
 and quick trace until breakpoint.
 If the next instruction is at address
 $3FF30 and it is a BSR.S, after this
 is executed, the address $3FF32 will
 be on the stack. Thus the breakpoint
 is set on the first instruction to be
 executed after a normal return.

Default Command

If the previous command was a TRACE or GO command, then a blank line
(just <ENTER>) is interpreted as trace one instruction.

6.3 RECALL

 RS number sets up a buffer for number steps
 Rc recalls last step to channel 'c'

RECALL is a backtrace facility which stores the registers for each trace
step in a rolling buffer. The number of steps that can be stored depends
on the memory available.

 RS set up a buffer for 8 steps
 R1 recall last step to channel 1 ...
 <ENTER> ... and previous step ...
 <ENTER> ... and previous to that

6.4 TRACE LEVEL

 LU trace user mode code only, GOes when
 trace enters a trap (default)
 LS trace supervisor mode code as well as
 user mode code

These two commands are used to specify whether QMON will trace the
internal operations of QDOS (QDOS code executes in supervisor mode). By
default the level is set to user mode only. However, if an exception
occurs which causes QMON to be entered in supervisor mode, then the
level is automatically reset to supervisor mode.

Note that, if the level is set to user mode only, then when a trap
instruction is traced, the instruction following the trap will not be
traced unless it is at a breakpoint.

6.5 BREAKPOINTS

 B [addresses] toggle breakpoint(s)
 BC clear all breakpoints

QMON can handle up to 7 permanent and one temporary breakpoints. The
temporary breakpoints are set by some of the GO and TRACE commands and
are cleared on completion of the command. 6 of the permanent set of
breakpoints are 'toggled' by the 'B' command, or all of these are
cleared by the BC command. At completion of the B command, the current
set of permanent breakpoints is listed. 'Toggling' a breakpoint means
setting the breakpoint if it is not already set, otherwise clearing it.
The seventh permanent breakpoint is set by the CB (macro command on
breakpoint) command.

 B list the current set of breakpoints.
 B 3ED80 if there is no breakpoint at $3ED80
 set one, otherwise clear it. Then list
 the current set of breakpoints.
 B 3ED80 3EDF8 toggle the breakpoints at $3ED80 and $3EDF8.

6.6 DISPLAY

 Dc [address [number]] display memory (in hex and ASCII)
 DIc [address [number]] display instructions in memory
 DRc display registers

The display commands can all send their output to the auxiliary channel
'c'. If given 'c' should be in the range 1 to 3.

The format of these displays are quite different from each other.

The display memory command displays on each line:

 the start address of the line,
 8 or 16 bytes (depending on the window width) in HEX,
 the same bytes in ASCII if printable or else '.';

while the display instructions command displays on each line:

 the address of the instruction,
 the first 2 bytes of the instruction,
 the disassembled instruction.

The default number of lines for these is 16 or one less than the height
of the display window, whichever is less. The default display address is
updated to be the address after the end of the display.

The display registers command displays:

the status register (in hex and the individual flags and the value of
 the interrupt mask) the alternative stack pointer,the values of the
 8 data registers and the 8 address registers,the next instruction in
 display instruction format.

 D 28000 display the start of the system vars.
 D1 display from end of previous display
 to channel 1.
 D L-10 10 display $10 bytes previous to last
 display address
 DI * display instructions starting at the
 next instruction
Default Command

If the previous command was a 'D' or 'DI' command, then a blank line is
taken to be another 'D' or 'DI' command to the same channel, and
displaying the same number of bytes or instructions, starting from the
new default address.

 DI1 3FCE0 8 displays 8 instructions from address
 $3FCE0 on channel 1
 <ENTER> displays the next 8 instructions too.

6.7 SET

 SB address byte set byte in memory
 SW address word set word in memory
 SL address long_word set long word in memory
 SDn value set data register
 SAn value set address register
 SSP value set appropriate stack pointer
 SUSP value set USP (user stack pointer)
 SSSP value set SSP (supervisor stack pointer)
 SSR value set SR (status register)
 SPC value set PC (program counter - the address
 of the next instruction)

The SET commands set a single value.

 SW 3E7C4 40 sets the word at $3E7C4 to $0040.
 SD4 63 sets D4 to $00000063.

6.8 MODIFY

 MBc [address] modify memory in bytes

 MWc [address] modify memory in words
 MLc [address] modify memory in long words
 MIc [address] modify instructions in memory

The modify commands start a dialogue in either the primary channel
window, or in the auxiliary channel 'c' (in the range 1 to 3) which must
be a CONsole channel. QMON writes out the address and the value or
instruction at that address, and the user can
 press ENTER to leave the value or instruction unchanged,
 press UP ARROW to go back a byte, word (MW or MI) or long word
 press DOWN ARROW to go on a byte, word, long word or instruction
 press ESC to stop the dialogue,
 retype the value or instruction followed by enter
 or edit the instruction using cursor keys in the normal way.

 Qmon> MB 38798 start modifying bytes at $38798
 38798 70 ENTER leaves byte unchanged
 38799 1e byte changed to $1E
 3879A 72 <ESC> ESC exits
 Qmon> MW modify words at default address
 3879A 7204 <ESC> ESC exits
 Qmon> MI modify instructions at default address
 3879A MOVEQ #$4,D1 ENTER leaves instruction unchanged
 3879C MOVEQ #$FF,D3 ... and so on.

Because the up arrow moves back by one word in the MI command, this will
tend to create spurious disassemblies when there are instructions which
are more than a word long. Equally, this facility may be used to get the
disassembler back into alignment if the MI command does not start on the
first word of an instruction.

6.9 EDIT

 Ec [address] edit memory in specified channel

This is a hexadecimal and character window based editor. Memory contents
may be changed simply by overtyping with the new values. The memory
display is similar to that produced by the display command with memory
addresses, hexadecimal values and characters. The up, down, left and
right keys are used to move the cursor, and <TABULATE> is used to move
between the hexadecimal area and the character area. <ESC> exits from
the editor.

6.10 FIND

 F value [range] find a string of bytes in memory
 F 'string' [range] find a string of bytes in memory
 FI 'string' [range] find a string within a disassembled
 instruction
 F or FI continue last F or FI

These commands search for strings of bytes or instructions. The default
range for the search is from the base of the system variables up to the
top of RAM. If a lower limit is given for the search range, then that
default is reset, if both a lower limit and an upper limit are given
then both defaults are reset. If no parameters are given then the
previously specified parameter will be used, and the search will start
one byte or one instruction beyond the last match found.

The display address will be set to the even address which comes 8 bytes
before the match. This means that a D or DI command will display the
context of the match, while a modify command will start well before the
match.

The value should be specified in hexadecimal and should have not more
than 64 digits (up to 32 bytes). Find string should be specified with a
string of not more than 32 characters. Find Instruction should also be
specified with a string of not more than 32 characters. The FI command
scans the memory disassembling every word, each disassembled instruction
is then searched for a matching string. This enables references to
particular addresses to be found as well as searching for particular
instruction formats. (Note that the disassembler uses hexadecimal
notation and the particular forms of commands: ADDA, ADDI, etc.) As
Finding an Instruction is very slow, the Find can be interrupted by
pressing <ESC>.

 F 4AFB find two bytes $4A and $FB in default
 range.
 F 704774 37000 reset range from $37000 up to default
 top, and find 3 bytes $70 $47 $74
 F 'JOBS' find the string 'JOBS'
 F find next occurrence of 'JOBS'
 D and display the memory around it
 FI 'addq.l #4,a7' find the instruction ADDQ.L #4,A7

6.11 OPEN

 Oc name opens 'name' as the debugger channel 'c'
 Oc closes or detaches debugger channel 'c'

The first action of the open command is to close or detach the channel
open already as channel 'c'. If the channel is 'owned' by QMON, then the
channel is closed, but if the channel is 'owned' by the SuperBASIC
interpreter, it is merely forgotten.

If no name is given, no new channel is opened. Otherwise, a new channel
is opened to the device or file specified. 'c' must be in the range 1 to
3 and the channel thus opened may be used by trace, display or (if a
CONsole) modify commands.

These auxiliary channels are shared by all jobs being monitored by QMON.

When first loaded QMON has channel 1 opened to BASIC #1 and channel 2
opened to BASIC #2.

 O3 MDV2_LOG open file MDV2_LOG (a new file) as
 QMON auxiliary channel 3
 O3 close or detach auxiliary channel 3

6.12 CALCULATE

 Cc address calculates the given address and
 writes it in hexadecimal and decimal
 to channel 'c'

This command is used to calculate an address.

 C 10(A6,A1) if A6 is $3b668 and A1 is $448 then
 this will write out:
 3BAC0 244416

6.13 MACRO COMMAND

 CS set macro command
 CT execute command every trace step

 CB address execute command at breakpoint
 CC clear CB and CT
 CX execute command

A macro command is a compound command which can be invoked directly, at
a specified breakpoint or at every trace step. The command is set up by
the CS command. It is a single line with one or more commands separated
by the '\' symbol. The command may be used to expand the short trace
produced by QMON, or to display memory contents or set memory locations
or registers at a breakpoint. If a command is to be executed at a
breakpoint, then, if execution of the job is required to continue, the
last command on the line should be a GO or QUICK instruction as
appropriate.

 Qmon> CS
 > D1 (A1) 8 \ SSP -4(SP) \ SL (SP) (D0) \ G
 Qmon> CB 36786
 Qmon> G

Just before the instruction at the breakpoint $36786 is executed, 8
bytes pointed to by A1 will be written to channel 1, then the stack
pointer will be decremented by 4 and the contents of D0 put on the
stack.
 Qmon> CS
 > D3 (A1) 8 \ D3 38688 8
 Qmon> CT
 Qmon> TU D6>10

Until D6 is greater than 10, at every step there is a partial memory
display to channel 3.

7 EXAMPLES OF USE

Note: press the ENTER key at the end of each command.

7.1 SuperBASIC Extensions I

To illustrate the use of QMON while developing extensions to the QL
SuperBASIC, the JOBS procedure which is supplied with QMON will be
examined.

This first example illustrates the use of QMON in 512 pixel (4 colour)
mode. This is the preferred mode for QMON as colour is of little help
while the advantage of 80 column output over 40 column is very great.
The example SuperBASIC Extensions II illustrates the use of 256 pixel
mode.

 RESET the QL,
 put QMON in drive 1 and press F1.

When the cursor appears QMON will be loaded but inactive. Before
invoking QMON load the job control extensions and try out the JOBS
command by typing

 LRUN MDV1_JOB (or LRUN FLP1_JOB)
 JOBS

The list of jobs currently executing in the QL is written to window #1;
there should only be one, the SuperBASIC interpreter, being job 0, tag
0, owner 0, priority 32 and no name. Now invoke QMON by typing

 QMON

A prompt 'Qmon> ' should appear in the command window. QMON is now

linked into the SuperBASIC interpreter (and, by implication, linked into
any jobs created by the SuperBASIC interpreter) and it is waiting for a
command

If the JOBS procedure is to be examined in action, a breakpoint should
be set to enter QMON when the procedure is called. The entry point of
JOBS will not be at the start of the resident procedure area, but we can
find it by examining the procedure definition table which will be near
the start of the resident procedure area. Now type

 Qmon> D 28000 (or d 28000)

The base of the system variables area is now displayed in the command
window. The address of the base of the resident procedure area is at
address 2801C, that is the last two groups of digits on the right hand
end of the second line. This address should be 3CA00 on a QL with 128
kbytes of RAM. To display the start of the resident procedures in window
#1, type

 Qmon> D1 3CA00 (or d1 3ca00)
Those with expanded memory machines will need to work out their own
addresses!

The right hand edge of the display in window #1 is mostly nonsense
characters and dots. However, from the third line onwards the words
'AJOB', 'RJOB', 'SPJOB, 'JOBS' are visible. This is the procedure
definition table.

To look at the start of the JOBS procedure, the start address of the
procedure is found by adding the offset (00A0) which precedes the name
'JOBS' in the table to the address of this offset (3CA28).

 Qmon> DI2 3CA28+A0

The code, now listed in window #2, starts with a branch to a routine to
get the channel for the JOBS command, followed by a check on the error
return from this subroutine. The register D7 is used as a count of the
number of lines written to the output channel, and so has one added to
it before the heading line is written out. To trace this code set a
breakpoint at the start address 3CA28+A0:

 Qmon> B L (L is the last address used)
 BRP 3CAC8 (confirms breakpoint set)
 Qmon> G (go on back to SuperBASIC)
 JOBS (do JOBS procedure)

The response to this should be the message 'At brp' (at breakpoint)
followed by a display of the registers. The next instruction to be
executed (a BSR.L) is displayed at the end. This call to a not very
interesting routine is bypassed.

 Qmon> GR (go until return)

The Z flag in the condition code register should be set, so that the
conditional branch (BNE) should not be taken. The condition code
register is the less significant byte of the status register (SR) and is
in the first line of the register display. The individual flags X, N, Z,
V, and C are put in the line if they are set. The digit is the current
interrupt mask value.

 Qmon> T (trace, just <ENTER> would do)

One instruction has been traced and the next is displayed. From now on
just pressing ENTER will trace one instruction at a time. Note that when

the next instruction to be traced is a TRAP then the trace is suspended
until the instruction after the TRAP has been executed. As this is is
usually a TST.L D0, this is not a very serious problem.

Repeated operations in QMON are interruptable using the ESC key. Type:

 Qmon> DI2 * FFFF (display many instructions)

pressing ESC will stop the display, pressing ENTER will restart it.

7.2 SuperBASIC Extensions II

This a repeat of the SuperBASIC Extensions I, but for TV mode.

 RESET the QL,
 put QMON in drive 1 and press F2.
When the cursor appears, QMON will be loaded but inactive. Before
invoking QMON load the job control extensions and try out the JOBS
command by typing

 LRUN MDV1_JOB (or LRUN FLP1_JOB)
 JOBS

The list of jobs currently executing in the QL is written to window #1;
there should only be one, the SuperBASIC interpreter, being job 0, tag
0, owner 0, priority 32 and no name. Now invoke QMON window #1 by typing

 QMON #1

A prompt 'Qmon> ' should appear in the window #1. In this mode there is
insufficient room for the register display in the command window, so it
is necessary to use a larger window for QMON. QMON is now linked into
the SuperBASIC interpreter (and, by implication, linked into any jobs
created by the SuperBASIC interpreter) and it is waiting for a command.

If the JOBS procedure is to be examined in action, a breakpoint should
be set to enter QMON when the procedure is called. The entry point of
JOBS will not be at the start of the resident procedure area, but we can
find it by examining the procedure definition table which will be near
the start of the resident procedure area. Now type

 Qmon> D 28000 20 (or d 28000 20)

The base of the system variables area is now displayed in window #1. The
address of the base of the resident procedure area is at address 2801C,
that is the last two groups of digits on the right hand end of the
fourth line. This address should be 3CA00 on a QL with 128 kbytes of
RAM. To display the start of the resident procedures, type

 Qmon> D 3CA00 (or d 3ca00)

The right hand edge of the display in window #1 is mostly nonsense
characters and dots. However, from the third line onwards the words
'AJOB', 'RJOB', 'SPJOB, 'JOBS' are visible. This is the procedure
definition table.

To look at the start of the JOBS procedure, the start address of the
procedure is found by adding the offset (00A0) which precedes the name
'JOBS' in the table to the address of this offset (3CA28).

 Qmon> DI 3CA28+A0

The code, now listed in window #1, starts with a branch to a routine to
get the channel for the JOBS command, followed by a check on the error

return from this subroutine. The register D7 is used as a count of the
number of lines written to the output channel, and so has one added to
it before the heading line is written out. To trace this code set a
breakpoint at the start address 3CA28+A0:

 Qmon> B L (L is the last address used)
 BRP 3CAC8 (confirms breakpoint set)
 Qmon> G (go on back to SuperBASIC)
 JOBS (do JOBS procedure)

The response to this should be the message 'At brp' (at breakpoint)
followed by a display of the registers. The next instruction to be
executed (a BSR.L) is displayed at the end. This call to a not very
interesting routine is bypassed

 Qmon> GR (go until return)
The Z flag in the condition code register should be set, so that the
conditional branch (BNE) should not be taken. The condition code
register is the less significant byte of the status register (SR) and is
in the first line of the register display. The individual flags X, N, Z,
V, and C are put in the line if they are set. The digit is the current
interrupt mask value.

 Qmon> T (trace, just <ENTER> would do)

One instruction has been traced and the next is displayed. From now on
just pressing ENTER will trace one instruction at a time. Note that when
the next instruction to be traced is a TRAP then the trace is suspended
until the instruction after the TRAP has been executed. As this is is
usually a TST.L D0, this is not a very serious problem.

Repeated operations in QMON are interruptable using the ESC key. Type

 Qmon> DI * FFFF (display many instructions)

Pressing ESC will stop the display, pressing ENTER will restart it. The
same principle holds for output to an external device. If a serial
printer is available, plug it into SER1, type

 Qmon> O3 SER1 (open SER1 as channel 3)
 Qmon> DI3 * FFFF (display on printer)
 <ESC> (stops the printer output)
 Qmon> G (carry on)

7.3 SuperBASIC Extensions III

After trying the previous examples, it is a simple matter to use QMON to
generate some trivial code. The first few bytes of the QMON and JOBS
extensions are only used for initialisation. Once called they may be
overwritten with complete safety. So, to illustrate the use of the QMON
assembler type

 QMON
 Qmon> MI 3CA00 (modify instructions)
 3CA00 LEA $3CA0E(PC),A1 (first instruction)
Type
 MOVEQ #$F6,D0<ENTER>

This instruction is accepted, but is a different length from the
previous instruction, and so the disassembler now makes a valiant, if
incorrect, attempt at interpreting the next word as the start of a four
byte instruction.

Type
 RTS<ENTER>
 <ESC>
 Qmon> G

The escape returns to QMON command mode. 'G' returns to BASIC.

This code sets the error register to 'end of file' and returns. Try

 CALL RESPR(0) (call base of resident procs)

The message 'end of file' should be written out.

7.4 Tips

If you are uncertain as to where to put a breakpoint, use the MI command
and move through the code using the down arrow (or possibly up arrow)
key, and, when you have found the instruction, press <ESC> and then type

 B N (breakpoint at next address)

If you are uncertain as to what is about to happen, use Quick trace
rather than Going. Then, if anything untoward happens, you can stop it
with <ESC>.

It is a good idea, when you are starting to develop software, to scatter
a number of TRAP #15 instructions through your code. These will not
affect the normal operation of the code, but, if QMON has been invoked,
then QMON will be entered at these instructions.

7.5 Executable Programs

A file 'clocks' is included with QMON as an example of an executable
program.

Clocks is a digital clock which executes in a default window which is
set up to be in the top right hand corner of window #0 for the default
monitor mode windows. The clock displays the day of the week, as well as
the day, month and time. Both the default window and the characters
displayed may be patched.

The characters displayed in the window are selected using a list of
bytes. The first byte is the number of bytes in the rest of the list and
each of the following bytes selects a character to be written. If the
byte is greater than hex 1F then the byte is the 'value' (or 'code') of
a character to be written. If the byte is between 0 and $17 (inclusive)
then it is a pointer to a buffer containing the characters of the day
and date:

 00 08 10 18
 | | | |
 day#yyyy mmm dd hh:mm:ss (the 4th byte is unset)

The list for the default display is:

 14,0,1,2,C,D,E,F,9,A,B,C,10,11,12,13,14,15,16,17,20

The addresses which may be patched in the program CLOCKS are:

 Address Length Value Meaning

 A8 byte 00 border width
 A9 byte 00 border colour
 AA byte 10 strip colour

 AB byte 07 ink colour
 AC word 003C window width
 AE word 0014 window height
 B0 word 01C0 X origin
 B2 word 00CE Y origin

 B4 bytes character list
The assembler listing of this program is in the file CLOCKS_LIST, it
will help to follow the execution of the program if you have a listing
of this file handy. To experiment with this program:

 RESET the QL,
 put QMON in drive 1 and press F1,
 type LRUN FLP1_JOB
 type QMON FLP1_CLOCKS

A register display should appear in window #1. The first instruction of
CLOCKS has been executed and the next instruction will set A6 to zero.
Type

 Qmon> D (display)

The start of the program should be displayed, and the name should be
visible on the right hand side of the display. Type

 Qmon> T 20 (trace 20)

When 32 instructions have been traced another register display will be
written. Type

 Qmon> Q FFFF

A large number of instructions will now be traced in quick trace mode,
pressing <ESC> will stop execution.

To trace the execution from the point where the clock is read, type

 Qmon> FI 'Q #$13,D0' S (find MOVEQ #$13,D0 after the start)
 3D116
 Qmon> MI (confirm it)
 3D10E MOVEQ #$FF,D1
 3D110 MOVEQ #$A,D3
 3D112 SUBA.L A1,A1
 3D114 TRAP #1
 3D116 MOVEQ #$13,D0
 3D118 TRAP #1 <ESC> (escape)
 Qmon> B N (set breakpoint at next address)
 Qmon> G

The program should now stop at the breakpoint. Type

 Qmon> T (or just <ENTER>)

The time has been fetched in D1, and the next instructions enter the ROM
to convert the time to characters.

 Qmon> T (next is JSR (A2))
 Qmon> GR (go until return)
 Qmon> T
 Qmon> T (next is JSR (A2))
 Qmon> GR (go until return)
 Qmon> D (a1) 20 (print 20 bytes from (a1))

As the next few instructions are traced, it should become apparent that

a loop is being executed, writing out individual characters. D6 is being
decremented. To speed up the trace, type

 Qmon> QU D6=1 (quick trace until D6=1)

The trace should stop when D6 has been decremented and there is a
conditional branch BGT.S as the next instruction. The final iteration
round the loop may now be traced one step at a time.
Typing the command 'G' will cause the program to execute until it comes
to the breakpoint again, so type

 Qmon> BC (clear breakpoints)
 Qmon> G (carry on)

Use CTRL SPACE to release SuperBASIC, (this, and CTRL C, could have been
done at any stage to list directories etc.) and type

 JOBS

There should now be two jobs running. The clock is job 1, tag 0 owner 0,
priority 1 and name 'Clocks'. To start tracing it again, type

 QMON 1 (monitor job 1)
or QMON 0\1 (monitor job 1 in transient window 0)

8 Quick Reference Guide
GO and TRACE

 G GO from current instruction
 G address GO from address
 GB address GO until breakpoint at address
 GB address condition GO until condition at breakpoint
 GR GO until return

 T c TRACE one instruction
 T c number TRACE number of instructions
 TU c condition TRACE until condition
 TB c address TRACE until breakpoint at address
 TB c address condition TRACE until condition at breakpoint
 TR c TRACE until return

 Q number QUICK number of instructions
 QU condition QUICK until condition
 QB address QUICK until breakpoint at address
 QB address condition QUICK until condition at breakpoint
 QR QUICK until return

 RECALL

 RS number creates buffer for number of steps
 R c recall last step

 TRACE level

 LU traces user mode code only, GOes when
 trace enters a trap (default)
 LS traces supervisor mode code as well as
 user mode code

 BREAKPOINTS

 B addresses toggle breakpoint(s) and list them
 BC clear all breakpoints

 DISPLAY memory

 D c address number display memory (in hex and ASCII)
 DI c address number display instructions in memory
 DR c display registers
 SET memory and registers

 SB address byte set byte in memory
 SW address word set word in memory
 SL address long word set long word in memory
 SD n value set data register
 SA n value set address register
 SSP value set appropriate stack pointer
 SUSP value set USP (user stack pointer)
 SSSP value set SSP (supervisor stack pointer)
 SSR value set SR (status register)
 SPC value set PC (program counter)

 MODIFY memory and registers

 MB c address modify memory in bytes
 MW c address modify memory in words
 ML c address modify memory in long words
 MI c address modify instructions in memory

 E c address edit memory

 FIND in memory

 F value range find a matching string of bytes.
 F 'string' range find a matching string of characters
 FI 'string' range find string in an instruction
 F or FI continue search

 OPEN and Close

 O c name opens 'name' as channel 'c'
 O c closes channel 'c'

 CALCULATE address

 C address calculates address and displays it

 Macro COMMANDS

 CS set macro command
 CT execute command every trace step
 CB address execute command at breakpoint
 CC clear CT or CB
 CX execute command

9 Job Control Extensions

There are four job control extensions in the file JOBS_BIN. These are
identical in form to the commands in the Sinclair QL Toolkit.

 JOBS list all jobs
 JOBS #channel list all jobs to channel
 RJOB job number, job tag, error code remove job
 AJOB job number, job tag, priority activate job
 SPJOB job number, job tag, priority set job priority

The job number and tag are listed with the job name by the JOBS command.

A job may only be activated if it has a priority of zero. On activation,
a job will start execution at the start address.
10 QMON Version Updates

This version of QMON is the first revision to QMON in more than 5 years.
In this time there had been a number of changes the QL world which have
left QMON behind. This version is slightly larger, and copes with many
of these changes.

10.1 Minerva

The QMON exception handling allows for the Minerva second screen. The
QMON SuperBASIC command copes with integer constants.

10.2 Pointer Environment

SuperBASIC is automatically suspended by the QMON command if

 a) QMON is invoked for another Job and
 b) QMON is invoked in channel owned by SuperBASIC.

The new command QMON_W suspends SuperBASIC - you can still break in with
CTRL SPACE.

The QMON output window is automatically picked before it is used.

The Job being monitored is picked when you GO.

Within QMON, the Job being monitored can be picked momentarily:

 F1 0.5 seconds
 F2 1.0 seconds
 F3 2.0 seconds
 F4 4.0 seconds
 F5 8.0 Seconds

10.3 GOLD card / Atari ST

The keyboard auto-repeat is independent of processor speed.

10.4 General

The Find buffer has been enlarged to 32 bytes

11 General Structure of QMON

QMON divides into four distinct sections plus utilities.

 Setup called from SuperBASIC in QL QMON

 Exception handling vectored entries

 Commands display M/C status, modify M/C status or set
QMON parameters

 (Dis)assembler single line assembler/disassembler

 QMON utilities I/O, numeric conversions, etc

 SuperBASIC utilities procedure parameter handling
There are some general rules which apply to the code of QMON. These
rules do not limit the generality of QMON, but make it possible for QMON
(which is entered on exception and thus uses the supervisor mode stack)

to trace jobs in the multitasking environment of QDOS which has a single
shared supervisor stack and where supervisor mode code is treated as
atomic.

While waiting for I/O, QMON idles in the mode of the job (or task)
which caused the entry into QMON.

 QMON does not use any user mode stack.

Any path of subroutine calls that leads to an I/O call, is required
to maintain the supervisor stack in a clean state.

 QMON does not modify the base register A6.

11.1 Setup

The setup code is environment specific. In the case of the QL, the setup
code is called from SuperBASIC and allocates the QDOS exception vector
together with a QMON working area. QMON uses four I/O channels, these
are identified by a long word. In the case of QL QMON, this long word is
a channel ID.

11.2 Exception processing

The exception processing starts with a vectored jump to a set of
branches to subroutines, followed by an exception name. The effect of
this is to put a pointer to the exception name on the stack. Illegal
instruction is used as a breakpoint, so this is flagged in the MSB of
address. TRACE exception is indicated with a zero address.

The first action of the exception processing code is to set the pointer
to the QMON working area. In the QL QMON, this is the same as the
exception vector address. Next, the registers are saved. (Note that in
the QL, a program's data area is potentially moveable; A6 (base
register) and USP are liable to be changed whenever I/O is performed.)

If the primary channel save area pointer is set, then the command window
is swapped into the screen. This is QL specific.

11.3 Commands

When the exception processing is complete, QMON will either return to
the job or task, or call the command routine to accept commands to
display or modify memory or registers, or to set the QMON parameters for
breakpoints or tracing.

The command routine is also entered directly from SuperBASIC.

The command table is in the main program and may be extended or altered
without any difficulty.

11.4 Assembler / disassembler

The assembler and disassembler are two independent modules which share
the instruction definition tables.
11.5 QMON utilities

There are three QMON utility routines. One is the QDOS specific I/O
routine, the other two are the general purpose routines for getting
items from the buffer and putting them into the buffer.

11.6 SuperBASIC utilities

The SuperBASIC utilities are called from the QL setup routine only.

11.7 Impure code

There is only one instance of impure code. This is the auxiliary channel
table embedded in the QDOS specific channel switching routine.

11.8 Register usage

D0 (together with the status register) is used for error code returns;
also used for loop counters etc.

D1 is used to hold the next character or digit when unbuffering.

D2 is returned from GET with the value of a number or address
expression. It also holds the value of the last or only parameter
set by COMMAND before a command routine is called.

A0 is a running pointer to the buffer (used by COMMAND, GET, PUT, DIS
and SING).

A1 is a pointer to the code to be assembled or disassembled by DIS and
SING.

A3 is the address set as the first parameter of two by COMMAND, and then
used by the command routines as a pointer to memory.

A5 always points to the QMON data area.

A6 is left alone.

